Suppr超能文献

小鼠心肌中的肌联蛋白-肌动蛋白相互作用:被动张力调节及其受钙/S100A1的调控

Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1.

作者信息

Yamasaki R, Berri M, Wu Y, Trombitás K, McNabb M, Kellermayer M S, Witt C, Labeit D, Labeit S, Greaser M, Granzier H

机构信息

Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington 99164-6520, USA.

出版信息

Biophys J. 2001 Oct;81(4):2297-313. doi: 10.1016/S0006-3495(01)75876-6.

Abstract

Passive tension in striated muscles derives primarily from the extension of the giant protein titin. However, several studies have suggested that, in cardiac muscle, interactions between titin and actin might also contribute to passive tension. We expressed recombinant fragments representing the subdomains of the extensible region of cardiac N2B titin (tandem-Ig segments, the N2B splice element, and the PEVK domain), and assayed them for binding to F-actin. The PEVK fragment bound F-actin, but no binding was detected for the other fragments. Comparison with a skeletal muscle PEVK fragment revealed that only the cardiac PEVK binds actin at physiological ionic strengths. The significance of PEVK-actin interaction was investigated using in vitro motility and single-myocyte mechanics. As F-actin slid relative to titin in the motility assay, a dynamic interaction between the PEVK domain and F-actin retarded filament sliding. Myocyte results suggest that a similar interaction makes a significant contribution to the passive tension. We also investigated the effect of calcium on PEVK-actin interaction. Although calcium alone had no effect, S100A1, a soluble calcium-binding protein found at high concentrations in the myocardium, inhibited PEVK-actin interaction in a calcium-dependent manner. Gel overlay analysis revealed that S100A1 bound the PEVK region in vitro in a calcium-dependent manner, and S100A1 binding was observed at several sites along titin's extensible region in situ, including the PEVK domain. In vitro motility results indicate that S100A1-PEVK interaction reduces the force that arises as F-actin slides relative to the PEVK domain, and we speculate that S100A1 may provide a mechanism to free the thin filament from titin and reduce titin-based tension before active contraction.

摘要

横纹肌中的被动张力主要源于巨大的肌联蛋白的伸展。然而,多项研究表明,在心肌中,肌联蛋白与肌动蛋白之间的相互作用也可能对被动张力有贡献。我们表达了代表心脏N2B肌联蛋白可伸展区域亚结构域的重组片段(串联免疫球蛋白片段、N2B剪接元件和富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域),并检测它们与F-肌动蛋白的结合情况。富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域片段与F-肌动蛋白结合,但未检测到其他片段的结合。与骨骼肌富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域片段比较发现,只有心脏富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域在生理离子强度下与肌动蛋白结合。使用体外运动分析和单个心肌细胞力学方法研究了富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域与肌动蛋白相互作用的意义。在运动分析中,当F-肌动蛋白相对于肌联蛋白滑动时,富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域与F-肌动蛋白之间的动态相互作用会阻碍细丝滑动。心肌细胞实验结果表明,类似的相互作用对被动张力有显著贡献。我们还研究了钙对富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域与肌动蛋白相互作用的影响。虽然单独的钙没有作用,但心肌中高浓度存在的可溶性钙结合蛋白S100A1以钙依赖的方式抑制富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域与肌动蛋白的相互作用。凝胶覆盖分析表明,S100A1在体外以钙依赖的方式结合富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域区域,并且在原位沿着肌联蛋白可伸展区域的几个位点观察到S100A1的结合,包括富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域。体外运动分析结果表明,S100A1与富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域的相互作用会降低F-肌动蛋白相对于富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域滑动时产生的力,并且我们推测S100A1可能提供一种机制,在主动收缩之前使细肌丝从肌联蛋白上释放并降低基于肌联蛋白的张力。

相似文献

2
PEVK domain of titin: an entropic spring with actin-binding properties.
J Struct Biol. 2002 Jan-Feb;137(1-2):194-205. doi: 10.1006/jsbi.2002.4468.
4
Titin-isoform dependence of titin-actin interaction and its regulation by S100A1/Ca2+ in skinned myocardium.
J Biomed Biotechnol. 2010;2010:727239. doi: 10.1155/2010/727239. Epub 2010 Apr 14.
5
Interaction forces between F-actin and titin PEVK domain measured with optical tweezers.
Biophys J. 2007 Sep 15;93(6):2102-9. doi: 10.1529/biophysj.107.106153. Epub 2007 May 18.
6
Molecular mechanics of cardiac titin's PEVK and N2B spring elements.
J Biol Chem. 2002 Mar 29;277(13):11549-58. doi: 10.1074/jbc.M200356200. Epub 2002 Jan 17.
7
Mechanical properties of titin isoforms.
Adv Exp Med Biol. 2000;481:283-300; discussion 300-4. doi: 10.1007/978-1-4615-4267-4_17.
8
Molecular dissection of N2B cardiac titin's extensibility.
Biophys J. 1999 Dec;77(6):3189-96. doi: 10.1016/S0006-3495(99)77149-3.
9
PKC phosphorylation of titin's PEVK element: a novel and conserved pathway for modulating myocardial stiffness.
Circ Res. 2009 Sep 25;105(7):631-8, 17 p following 638. doi: 10.1161/CIRCRESAHA.109.198465. Epub 2009 Aug 13.

引用本文的文献

1
Titin's Intrinsically Disordered PEVK Domain Modulates Actin Polymerization.
Int J Mol Sci. 2025 Jul 21;26(14):7004. doi: 10.3390/ijms26147004.
2
Glycerol storage increases passive stiffness of muscle fibers through effects on titin extensibility.
J Gen Physiol. 2025 Jul 7;157(4). doi: 10.1085/jgp.202413729. Epub 2025 May 9.
3
Consecutive SSCs increase the SSC effect in skinned rat muscle fibres.
Pflugers Arch. 2025 Jun;477(6):873-888. doi: 10.1007/s00424-025-03088-2. Epub 2025 May 8.
4
Fluid mechanics of sarcomeres as porous media.
Soft Matter. 2025 Apr 9;21(15):2849-2867. doi: 10.1039/d4sm01327a.
5
Importance of N2BA Titin in Maintaining Cardiac Homeostasis and Its Role in Dilated Cardiomyopathy.
Circ Heart Fail. 2025 Mar;18(3):e012083. doi: 10.1161/CIRCHEARTFAILURE.124.012083. Epub 2025 Feb 11.
6
The calcium-binding protein S100A1 binds to titin's N2A insertion sequence in a pH-dependent manner.
J Gen Physiol. 2025 Jan 6;157(1). doi: 10.1085/jgp.202313472. Epub 2024 Dec 31.
7
S100A1's single cysteine is an indispensable redox switch for the protection against diastolic calcium waves in cardiomyocytes.
Am J Physiol Heart Circ Physiol. 2024 Jul 1;327(1):H000. doi: 10.1152/ajpheart.00634.2023. Epub 2024 May 31.
8
Role of microRNA-363 during tumor progression and invasion.
J Physiol Biochem. 2024 Aug;80(3):481-499. doi: 10.1007/s13105-024-01022-1. Epub 2024 May 1.
9
Characterizing residual and passive force enhancements in cardiac myofibrils.
Biophys J. 2023 Apr 18;122(8):1538-1547. doi: 10.1016/j.bpj.2023.03.022. Epub 2023 Mar 17.
10
Titin activates myosin filaments in skeletal muscle by switching from an extensible spring to a mechanical rectifier.
Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2219346120. doi: 10.1073/pnas.2219346120. Epub 2023 Feb 22.

本文引用的文献

1
Polyproline II helix is a key structural motif of the elastic PEVK segment of titin.
Biochemistry. 2001 Mar 27;40(12):3427-38. doi: 10.1021/bi0022792.
2
Identification of new repeating motifs in titin.
Proteins. 2001 May 1;43(2):145-9. doi: 10.1002/1097-0134(20010501)43:2<145::aid-prot1026>3.0.co;2-b.
3
Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle.
J Mol Cell Cardiol. 2000 Dec;32(12):2151-62. doi: 10.1006/jmcc.2000.1281.
4
S100A1 and S100B interactions with annexins.
Biochim Biophys Acta. 2000 Dec 20;1498(2-3):192-206. doi: 10.1016/s0167-4889(00)00096-3.
6
Modular motif, structural folds and affinity profiles of the PEVK segment of human fetal skeletal muscle titin.
J Biol Chem. 2001 Mar 9;276(10):7442-9. doi: 10.1074/jbc.M008851200. Epub 2000 Nov 17.
7
Ca(2+)-dependence of passive properties of cardiac sarcomeres.
Adv Exp Med Biol. 2000;481:353-66; discussion 367-70.
8
Sequence and mechanical implications of titin's PEVK region.
Adv Exp Med Biol. 2000;481:53-63; discussion 64-6, 107-10. doi: 10.1007/978-1-4615-4267-4_4.
9
Calcium fluxes involved in control of cardiac myocyte contraction.
Circ Res. 2000 Aug 18;87(4):275-81. doi: 10.1161/01.res.87.4.275.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验