Yamasaki R, Berri M, Wu Y, Trombitás K, McNabb M, Kellermayer M S, Witt C, Labeit D, Labeit S, Greaser M, Granzier H
Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington 99164-6520, USA.
Biophys J. 2001 Oct;81(4):2297-313. doi: 10.1016/S0006-3495(01)75876-6.
Passive tension in striated muscles derives primarily from the extension of the giant protein titin. However, several studies have suggested that, in cardiac muscle, interactions between titin and actin might also contribute to passive tension. We expressed recombinant fragments representing the subdomains of the extensible region of cardiac N2B titin (tandem-Ig segments, the N2B splice element, and the PEVK domain), and assayed them for binding to F-actin. The PEVK fragment bound F-actin, but no binding was detected for the other fragments. Comparison with a skeletal muscle PEVK fragment revealed that only the cardiac PEVK binds actin at physiological ionic strengths. The significance of PEVK-actin interaction was investigated using in vitro motility and single-myocyte mechanics. As F-actin slid relative to titin in the motility assay, a dynamic interaction between the PEVK domain and F-actin retarded filament sliding. Myocyte results suggest that a similar interaction makes a significant contribution to the passive tension. We also investigated the effect of calcium on PEVK-actin interaction. Although calcium alone had no effect, S100A1, a soluble calcium-binding protein found at high concentrations in the myocardium, inhibited PEVK-actin interaction in a calcium-dependent manner. Gel overlay analysis revealed that S100A1 bound the PEVK region in vitro in a calcium-dependent manner, and S100A1 binding was observed at several sites along titin's extensible region in situ, including the PEVK domain. In vitro motility results indicate that S100A1-PEVK interaction reduces the force that arises as F-actin slides relative to the PEVK domain, and we speculate that S100A1 may provide a mechanism to free the thin filament from titin and reduce titin-based tension before active contraction.
横纹肌中的被动张力主要源于巨大的肌联蛋白的伸展。然而,多项研究表明,在心肌中,肌联蛋白与肌动蛋白之间的相互作用也可能对被动张力有贡献。我们表达了代表心脏N2B肌联蛋白可伸展区域亚结构域的重组片段(串联免疫球蛋白片段、N2B剪接元件和富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域),并检测它们与F-肌动蛋白的结合情况。富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域片段与F-肌动蛋白结合,但未检测到其他片段的结合。与骨骼肌富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域片段比较发现,只有心脏富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域在生理离子强度下与肌动蛋白结合。使用体外运动分析和单个心肌细胞力学方法研究了富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域与肌动蛋白相互作用的意义。在运动分析中,当F-肌动蛋白相对于肌联蛋白滑动时,富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域与F-肌动蛋白之间的动态相互作用会阻碍细丝滑动。心肌细胞实验结果表明,类似的相互作用对被动张力有显著贡献。我们还研究了钙对富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域与肌动蛋白相互作用的影响。虽然单独的钙没有作用,但心肌中高浓度存在的可溶性钙结合蛋白S100A1以钙依赖的方式抑制富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域与肌动蛋白的相互作用。凝胶覆盖分析表明,S100A1在体外以钙依赖的方式结合富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域区域,并且在原位沿着肌联蛋白可伸展区域的几个位点观察到S100A1的结合,包括富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域。体外运动分析结果表明,S100A1与富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域的相互作用会降低F-肌动蛋白相对于富含脯氨酸、谷氨酸、缬氨酸和赖氨酸的结构域滑动时产生的力,并且我们推测S100A1可能提供一种机制,在主动收缩之前使细肌丝从肌联蛋白上释放并降低基于肌联蛋白的张力。