Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany.
Am J Physiol Heart Circ Physiol. 2024 Jul 1;327(1):H000. doi: 10.1152/ajpheart.00634.2023. Epub 2024 May 31.
The EF-hand calcium (Ca) sensor protein S100A1 combines inotropic with antiarrhythmic potency in cardiomyocytes (CMs). Oxidative posttranslational modification (ox-PTM) of S100A1's conserved, single-cysteine residue (C85) via reactive nitrogen species (i.e., -nitrosylation or -glutathionylation) has been proposed to modulate conformational flexibility of intrinsically disordered sequence fragments and to increase the molecule's affinity toward Ca. Considering the unknown biological functional consequence, we aimed to determine the impact of the C85 moiety of S100A1 as a potential redox switch. We first uncovered that S100A1 is endogenously glutathionylated in the adult heart in vivo. To prevent glutathionylation of S100A1, we generated S100A1 variants that were unresponsive to ox-PTMs. Overexpression of wild-type (WT) and C85-deficient S100A1 protein variants in isolated CM demonstrated equal inotropic potency, as shown by equally augmented Ca transient amplitudes under basal conditions and β-adrenergic receptor (βAR) stimulation. However, in contrast, ox-PTM defective S100A1 variants failed to protect against arrhythmogenic diastolic sarcoplasmic reticulum (SR) Ca waves and ryanodine receptor 2 (RyR2) hypernitrosylation during βAR stimulation. Despite diastolic performance failure, C85-deficient S100A1 protein variants exerted similar Ca-dependent interaction with the RyR2 than WT-S100A1. Dissecting S100A1's molecular structure-function relationship, our data indicate for the first time that the conserved C85 residue potentially acts as a redox switch that is indispensable for S100A1's antiarrhythmic but not its inotropic potency in CMs. We, therefore, propose a model where C85's ox-PTM determines S100A1's ability to beneficially control diastolic but not systolic RyR2 activity. S100A1 is an emerging candidate for future gene-therapy treatment of human chronic heart failure. We aimed to study the significance of the conserved single-cysteine 85 (C85) residue in cardiomyocytes. We show that S100A1 is endogenously glutathionylated in the heart and demonstrate that this is dispensable to increase systolic Ca transients, but indispensable for mediating S100A1's protection against sarcoplasmic reticulum (SR) Ca waves, which was dependent on the ryanodine receptor 2 (RyR2) nitrosylation status.
EF 手钙(Ca)传感器蛋白 S100A1 在心肌细胞(CM)中具有变力性和抗心律失常作用。通过活性氮物种(即亚硝基化或谷胱甘肽化)对 S100A1 的保守单一半胱氨酸残基(C85)进行氧化后翻译修饰(ox-PTM),据推测可以调节无规卷曲序列片段的构象灵活性,并增加分子对 Ca 的亲和力。考虑到未知的生物学功能后果,我们旨在确定 S100A1 的 C85 部分作为潜在的氧化还原开关的影响。我们首先发现 S100A1 在体内成年心脏中内源性谷胱甘肽化。为了防止 S100A1 的谷胱甘肽化,我们生成了对 ox-PTM 无反应的 S100A1 变体。在分离的 CM 中转染野生型(WT)和 C85 缺失 S100A1 蛋白变体,证明具有相同的变力作用,基础条件下 Ca 瞬变幅度增加,β-肾上腺素能受体(βAR)刺激时增加。然而,相反,ox-PTM 缺陷的 S100A1 变体无法防止致心律失常的舒张肌浆网(SR)Ca 波和 RyR2 过亚硝基化在βAR 刺激期间。尽管舒张性能失败,C85 缺失的 S100A1 蛋白变体与 WT-S100A1 相比,仍能发挥类似的 Ca 依赖性与 RyR2 的相互作用。剖析 S100A1 的分子结构-功能关系,我们的数据首次表明,保守的 C85 残基可能作为氧化还原开关,对于 S100A1 的抗心律失常作用是必不可少的,但对于 CM 中的变力作用不是必需的。因此,我们提出了一个模型,其中 C85 的 ox-PTM 决定了 S100A1 控制舒张但不控制收缩 RyR2 活性的能力。S100A1 是治疗人类慢性心力衰竭的未来基因治疗的候选药物。我们旨在研究保守的单个半胱氨酸 85(C85)残基在心肌细胞中的重要性。我们表明 S100A1 在心脏中内源性谷胱甘肽化,并证明这对于增加收缩期 Ca 瞬变不是必需的,但对于介导 S100A1 对肌浆网(SR)Ca 波的保护作用是必需的,而这依赖于 Ryanodine 受体 2(RyR2)的亚硝基化状态。