Hanner M, Green B, Gao Y D, Schmalhofer W A, Matyskiela M, Durand D J, Felix J P, Linde A R, Bordallo C, Kaczorowski G J, Kohler M, Garcia M L
Department of Ion Channels, and Molecular Systems, Merck Research Laboratories, PO Box 2000, Rahway, New Jersey 07065, USA.
Biochemistry. 2001 Oct 2;40(39):11687-97. doi: 10.1021/bi0111698.
Correolide is a novel immunosuppressant that inhibits the voltage-gated potassium channel K(v)1.3 [Felix et al. (1999) Biochemistry 38, 4922-4930]. [(3)H]Dihydrocorreolide (diTC) binds with high affinity to membranes expressing homotetrameric K(v)1.3 channels, and high affinity diTC binding can be conferred to the diTC-insensitive channel, K(v)3.2, after substitution of three nonconserved residues in S(5) and S(6) with the corresponding amino acids present in K(v)1.3 [Hanner et al. (1999) J. Biol. Chem. 274, 25237-25244]. Site-directed mutagenesis along S(5) and S(6) of K(v)1.3 was employed to identify those residues that contribute to high affinity binding of diTC. Binding of monoiodotyrosine-HgTX(1)A19Y/Y37F ([(125)I]HgTX(1)A19Y/Y37F) in the external vestibule of the channel was used to characterize each mutant for both tetrameric channel formation and levels of channel expression. Substitutions at Leu(346) and Leu(353) in S(5), and Ala(413), Val(417), Ala(421), Pro(423), and Val(424) in S(6), cause the most dramatic effect on diTC binding to K(v)1.3. Some of the critical residues in S(6) appear to be present in a region of the protein that alters its conformation during channel gating. Molecular modeling of the S(5)-S(6) region of K(v)1.3 using the X-ray coordinates of the KcsA channel, and other experimental constraints, yield a template that can be used to dock diTC in the channel. DiTC appears to bind in the water-filled cavity below the selectivity filter to a hydrophobic pocket contributed by the side chains of specific residues. High affinity binding is predicted to be determined by the complementary shape between the bowl-shape of the cavity and the shape of the ligand. The conformational change that occurs in this region of the protein during channel gating may explain the state-dependent interaction of diTC with K(v)1.3.
环棱螺素是一种新型免疫抑制剂,可抑制电压门控钾通道K(v)1.3 [费利克斯等人(1999年)《生物化学》38卷,4922 - 4930页]。[³H]二氢环棱螺素(diTC)与表达同源四聚体K(v)1.3通道的膜具有高亲和力结合,并且在将S(5)和S(6)中的三个非保守残基替换为K(v)1.3中存在的相应氨基酸后,高亲和力的diTC结合可赋予对diTC不敏感的通道K(v)3.2 [汉纳等人(1999年)《生物化学杂志》274卷,25237 - 25244页]。利用K(v)1.3的S(5)和S(6)进行定点诱变,以确定那些有助于diTC高亲和力结合的残基。通道外部前庭中一碘酪氨酸 - HgTX(1)A19Y/Y37F([¹²⁵I]HgTX(1)A19Y/Y37F)的结合用于表征每个突变体的四聚体通道形成和通道表达水平。S(5)中的亮氨酸346和亮氨酸353以及S(6)中的丙氨酸413、缬氨酸417、丙氨酸421、脯氨酸423和缬氨酸424的替换对diTC与K(v)1.3的结合产生最显著的影响。S(6)中的一些关键残基似乎存在于蛋白质的一个区域,该区域在通道门控期间会改变其构象。利用KcsA通道的X射线坐标和其他实验限制对K(v)1.3的S(5) - S(6)区域进行分子建模,得到一个可用于将diTC对接在通道中的模板。DiTC似乎结合在选择性过滤器下方充满水的腔中,与特定残基侧链形成的疏水口袋结合。预测高亲和力结合由腔的碗状形状与配体形状之间互补形状决定。蛋白质在通道门控期间该区域发生的构象变化可能解释了diTC与K(v)1.3的状态依赖性相互作用。