Suppr超能文献

真细菌DNA复制和修复系统中的一种通用蛋白质-蛋白质相互作用基序。

A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems.

作者信息

Dalrymple B P, Kongsuwan K, Wijffels G, Dixon N E, Jennings P A

机构信息

Commonwealth Scientific and Industrial Research Organisation Livestock Industries, 120 Meiers Road, Indooroopilly QLD 4068, Australia.

出版信息

Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11627-32. doi: 10.1073/pnas.191384398.

Abstract

The interaction between DNA polymerases and sliding clamp proteins confers processivity in DNA synthesis. This interaction is critical for most DNA replication machines from viruses and prokaryotes to higher eukaryotes. The clamp proteins also participate in a variety of dynamic and competing protein-protein interactions. However, clamp-protein binding sequences have not so far been identified in the eubacteria. Here we show from three lines of evidence, bioinformatics, yeast two-hybrid analysis, and inhibition of protein-protein interaction by modified peptides, that variants of a pentapeptide motif (consensus QL[SD]LF) are sufficient to enable interaction of a number of proteins with an archetypal eubacterial sliding clamp (the beta subunit of Escherichia coli DNA polymerase III holoenzyme). Representatives of this motif are present in most sequenced members of the eubacterial DnaE, PolC, PolB, DinB, and UmuC families of DNA polymerases and the MutS1 mismatch repair protein family. The component tripeptide DLF inhibits the binding of the alpha (DnaE) subunit of E. coli DNA polymerase III to beta at microM concentration, identifying key residues. Comparison of the eubacterial, eukaryotic, and archaeal sliding clamp binding motifs suggests that the basic interactions have been conserved across the evolutionary landscape.

摘要

DNA聚合酶与滑动夹蛋白之间的相互作用赋予了DNA合成过程中的持续合成能力。这种相互作用对于从病毒、原核生物到高等真核生物的大多数DNA复制机器而言至关重要。夹蛋白还参与各种动态且相互竞争的蛋白质-蛋白质相互作用。然而,迄今为止在真细菌中尚未鉴定出夹蛋白结合序列。在此,我们通过生物信息学、酵母双杂交分析以及修饰肽对蛋白质-蛋白质相互作用的抑制这三条证据表明,一个五肽基序(共有序列QL[SD]LF)的变体足以使多种蛋白质与典型的真细菌滑动夹(大肠杆菌DNA聚合酶III全酶的β亚基)发生相互作用。该基序的代表序列存在于真细菌DNA聚合酶的DnaE、PolC、PolB、DinB和UmuC家族以及MutS1错配修复蛋白家族的大多数已测序成员中。组成性三肽DLF在微摩尔浓度下可抑制大肠杆菌DNA聚合酶III的α(DnaE)亚基与β亚基的结合,从而确定了关键残基。对真细菌、真核生物和古细菌滑动夹结合基序的比较表明,基本相互作用在整个进化过程中得以保守。

相似文献

1
A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems.
Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11627-32. doi: 10.1073/pnas.191384398.
3
Interaction of the beta sliding clamp with MutS, ligase, and DNA polymerase I.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8376-80. doi: 10.1073/pnas.121009498.
6
Two essential DNA polymerases at the bacterial replication fork.
Science. 2001 Nov 23;294(5547):1716-9. doi: 10.1126/science.1066351.
7
The glycine-rich motif of Pyrococcus abyssi DNA polymerase D is critical for protein stability.
J Mol Biol. 2010 Mar 5;396(4):840-8. doi: 10.1016/j.jmb.2010.01.006. Epub 2010 Jan 11.
9
Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair.
EMBO J. 2003 Dec 1;22(23):6408-18. doi: 10.1093/emboj/cdg603.
10
Crystal structure of DNA polymerase III β sliding clamp from Mycobacterium tuberculosis.
Biochem Biophys Res Commun. 2011 Feb 11;405(2):272-7. doi: 10.1016/j.bbrc.2011.01.027. Epub 2011 Jan 8.

引用本文的文献

4
A bipartite interaction with the processivity clamp potentiates Pol IV-mediated TLS.
Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2421471122. doi: 10.1073/pnas.2421471122. Epub 2025 Feb 24.
6
Common themes in architecture and interactions of prokaryotic PolB2 and Pol V mutasomes inferred from studies.
Comput Struct Biotechnol J. 2025 Jan 16;27:401-410. doi: 10.1016/j.csbj.2025.01.010. eCollection 2025.
7
Peptide design to control protein-protein interactions.
Chem Soc Rev. 2025 Feb 17;54(4):1684-1698. doi: 10.1039/d4cs00243a.
8
Small molecules targeting the eubacterial β-sliding clamp discovered by combined and screening approaches.
J Enzyme Inhib Med Chem. 2025 Dec;40(1):2440861. doi: 10.1080/14756366.2024.2440861. Epub 2025 Jan 3.
10
Structural characterisation of the complete cycle of sliding clamp loading in Escherichia coli.
Nat Commun. 2024 Sep 27;15(1):8372. doi: 10.1038/s41467-024-52623-9.

本文引用的文献

1
Interaction of the beta sliding clamp with MutS, ligase, and DNA polymerase I.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8376-80. doi: 10.1073/pnas.121009498.
3
The puzzle of PCNA's many partners.
Bioessays. 2000 Nov;22(11):997-1006. doi: 10.1002/1521-1878(200011)22:11<997::AID-BIES6>3.0.CO;2-#.
4
Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes.
J Biol Chem. 2000 Nov 24;275(47):36498-501. doi: 10.1074/jbc.C000513200.
6
Two modes of FEN1 binding to PCNA regulated by DNA.
EMBO J. 2000 Jul 17;19(14):3811-21. doi: 10.1093/emboj/19.14.3811.
8
The DNA replication machine of a gram-positive organism.
J Biol Chem. 2000 Sep 15;275(37):28971-83. doi: 10.1074/jbc.M003565200.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验