Callahan T K, Knobloch E
Department of Physics, University of California, Berkeley, California 94720, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 2):036214. doi: 10.1103/PhysRevE.64.036214. Epub 2001 Aug 28.
Long-wavelength instabilities of steady patterns, spatially periodic in three dimensions, are studied. All potentially stable patterns with the symmetries of the simple-, face-centered- and body-centered-cubic lattices are considered. The results generalize the well-known Eckhaus, zigzag, and skew-varicose instabilities to three-dimensional patterns and are applied to two-species reaction-diffusion equations modeling the Turing instability.
研究了三维空间中呈空间周期性的稳态图案的长波长不稳定性。考虑了具有简单立方晶格、面心立方晶格和体心立方晶格对称性的所有潜在稳定图案。这些结果将著名的埃克豪斯不稳定性、之字形不稳定性和斜静脉曲张不稳定性推广到三维图案,并应用于模拟图灵不稳定性的双物种反应扩散方程。