Guiu-Souto Jacobo, Muñuzuri Alberto P
Group of Nonlinear Physics, Department of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012917. doi: 10.1103/PhysRevE.91.012917. Epub 2015 Jan 21.
Constantly acting centrifugal forces on Turing pattern forming systems have been observed to induce orientation and wavelength changes on Turing structures. Here, we will consider a periodic modulation of such centrifugal forces and their effects on pattern formation. Depending on the oscillation period the system exhibits a wide variety of stationary (stripes, H(0), etc.) or nonstationary patterns (black eyes, etc.), as well as transitions and instabilities such as Eckhaus, zigzag, etc. In this paper, a detailed description of the different patterns and patterning mechanisms will be described and understood within the previous context. The system considered is the Belousov-Zhabotinsky reaction encapsulated in AOT micelles modeled by the adapted version of the Oregonator model.
人们观察到,作用于图灵模式形成系统的持续离心力会导致图灵结构的取向和波长发生变化。在此,我们将考虑这种离心力的周期性调制及其对模式形成的影响。根据振荡周期,系统会呈现出各种各样的静止模式(条纹、H(0)等)或非静止模式(黑眼等),以及诸如埃克豪斯、锯齿形等转变和不稳定性。在本文中,将在前述背景下对不同模式和图案形成机制进行详细描述并加以理解。所考虑的系统是封装在由俄勒冈振子模型的改编版本所模拟的AOT胶束中的贝洛索夫 - 扎博京斯基反应。