Suppr超能文献

恶臭假单胞菌Crc全局调控因子控制来自几个染色体芳香族化合物分解代谢途径的基因表达。

The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds.

作者信息

Morales Gracia, Linares Juan Francisco, Beloso Ana, Albar Juan Pablo, Martínez José Luis, Rojo Fernando

机构信息

Departamento de Biotecnología Microbiana. Servicio de Proteómica, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

出版信息

J Bacteriol. 2004 Mar;186(5):1337-44. doi: 10.1128/JB.186.5.1337-1344.2004.

Abstract

The Crc protein is involved in the repression of several catabolic pathways for the assimilation of some sugars, nitrogenated compounds, and hydrocarbons in Pseudomonas putida and Pseudomonas aeruginosa when other preferred carbon sources are present in the culture medium (catabolic repression). Crc appears to be a component of a signal transduction pathway modulating carbon metabolism in pseudomonads, although its mode of action is unknown. To better understand the role of Crc, the proteome profile of two otherwise isogenic P. putida strains containing either a wild-type or an inactivated crc allele was compared. The results showed that Crc is involved in the catabolic repression of the hpd and hmgA genes from the homogentisate pathway, one of the central catabolic pathways for aromatic compounds that is used to assimilate intermediates derived from the oxidation of phenylalanine, tyrosine, and several aromatic hydrocarbons. This led us to analyze whether Crc also regulates the expression of the other central catabolic pathways for aromatic compounds present in P. putida. It was found that genes required to assimilate benzoate through the catechol pathway (benA and catBCA) and 4-OH-benzoate through the protocatechuate pathway (pobA and pcaHG) are also negatively modulated by Crc. However, the pathway for phenylacetate appeared to be unaffected by Crc. These results expand the influence of Crc to pathways used to assimilate several aromatic compounds, which highlights its importance as a master regulator of carbon metabolism in P. putida.

摘要

当培养基中存在其他更优碳源时(分解代谢阻遏),Crc蛋白参与抑制恶臭假单胞菌和铜绿假单胞菌中一些糖类、含氮化合物及碳氢化合物同化的多种分解代谢途径。尽管Crc的作用模式尚不清楚,但它似乎是调节假单胞菌碳代谢的信号转导途径的一个组成部分。为了更好地理解Crc的作用,比较了两株其他方面同基因的恶臭假单胞菌菌株的蛋白质组图谱,其中一株含有野生型crc等位基因,另一株含有失活的crc等位基因。结果表明,Crc参与了对来自尿黑酸途径的hpd和hmgA基因的分解代谢阻遏,尿黑酸途径是芳香族化合物的主要分解代谢途径之一,用于同化苯丙氨酸、酪氨酸和几种芳香烃氧化产生的中间体。这促使我们分析Crc是否也调节恶臭假单胞菌中其他芳香族化合物主要分解代谢途径的表达。结果发现,通过邻苯二酚途径同化苯甲酸所需的基因(benA和catBCA)以及通过原儿茶酸途径同化4-羟基苯甲酸所需的基因(pobA和pcaHG)也受到Crc的负调控。然而,苯乙酸途径似乎不受Crc的影响。这些结果将Crc的影响扩展到用于同化多种芳香族化合物的途径,突出了其作为恶臭假单胞菌碳代谢主要调节因子的重要性。

相似文献

2
The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy.
Environ Microbiol. 2013 Jan;15(1):227-41. doi: 10.1111/j.1462-2920.2012.02863.x. Epub 2012 Aug 28.
3
Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440.
Environ Microbiol. 2002 Dec;4(12):824-41. doi: 10.1046/j.1462-2920.2002.00370.x.
4
Levels and activity of the Pseudomonas putida global regulatory protein Crc vary according to growth conditions.
J Bacteriol. 2005 Jun;187(11):3678-86. doi: 10.1128/JB.187.11.3678-3686.2005.
7
Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.
J Bacteriol. 2001 Nov;183(21):6197-206. doi: 10.1128/JB.183.21.6197-6206.2001.
10

引用本文的文献

2
Differential anaerobic oxidation of benzoate in FRC-32.
Microbiol Spectr. 2025 Apr;13(4):e0232424. doi: 10.1128/spectrum.02324-24. Epub 2025 Mar 5.
5
Combinatorial pathway balancing provides biosynthetic access to 2-fluoro-,-muconate in engineered .
Chem Catal. 2021 Nov 18;1(6):1234-1259. doi: 10.1016/j.checat.2021.09.002.
6
The global regulator Hfq exhibits far more extensive and intensive regulation than Crc in Pseudomonas protegens H78.
Mol Plant Pathol. 2021 Aug;22(8):921-938. doi: 10.1111/mpp.13070. Epub 2021 May 8.
7
A genome-wide approach for identification and characterisation of metabolite-inducible systems.
Nat Commun. 2020 Mar 5;11(1):1213. doi: 10.1038/s41467-020-14941-6.
8
Reverse diauxie phenotype in biofilm revealed by exometabolomics and label-free proteomics.
NPJ Biofilms Microbiomes. 2019 Oct 25;5(1):31. doi: 10.1038/s41522-019-0104-7. eCollection 2019.
9
Rewiring the functional complexity between Crc, Hfq and sRNAs to regulate carbon catabolite repression in Pseudomonas.
World J Microbiol Biotechnol. 2019 Aug 26;35(9):140. doi: 10.1007/s11274-019-2717-7.
10
High-Yield Production of 4-Hydroxybenzoate From Glucose or Glycerol by an Engineered VLB120.
Front Bioeng Biotechnol. 2019 Jun 12;7:130. doi: 10.3389/fbioe.2019.00130. eCollection 2019.

本文引用的文献

2
Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440.
Environ Microbiol. 2002 Dec;4(12):824-41. doi: 10.1046/j.1462-2920.2002.00370.x.
3
Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440.
Environ Microbiol. 2002 Dec;4(12):799-808. doi: 10.1046/j.1462-2920.2002.00366.x.
4
Malate:quinone oxidoreductase is essential for growth on ethanol or acetate in Pseudomonas aeruginosa.
Microbiology (Reading). 2002 Dec;148(Pt 12):3839-3847. doi: 10.1099/00221287-148-12-3839.
5
Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa.
Microbiology (Reading). 2002 May;148(Pt 5):1561-1569. doi: 10.1099/00221287-148-5-1561.
6
Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.
J Bacteriol. 2001 Nov;183(21):6197-206. doi: 10.1128/JB.183.21.6197-6206.2001.
8
Regulation of the p-hydroxybenzoic acid hydroxylase gene (pobA) in plant-growth-promoting Pseudomonas putida WCS358.
Microbiology (Reading). 2001 Jun;147(Pt 6):1611-1620. doi: 10.1099/00221287-147-6-1611.
9
Coupling mechanism of the oxaloacetate decarboxylase Na(+) pump.
Biochim Biophys Acta. 2001 May 1;1505(1):1-14. doi: 10.1016/s0005-2728(00)00272-3.
10
The black cat/white cat principle of signal integration in bacterial promoters.
EMBO J. 2001 Jan 15;20(1-2):1-11. doi: 10.1093/emboj/20.1.1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验