Suppr超能文献

用于分析神经元同步性的希尔伯特变换与小波方法的比较。

Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony.

作者信息

Le Van Quyen M, Foucher J, Lachaux J, Rodriguez E, Lutz A, Martinerie J, Varela F J

机构信息

Laboratoire de Neurosciences Cognitives et Imagerie Cérébrale (LENA), Hôpital de La Salpêtrière, CNRS UPR 640, 47 Bd. de l'Hôpital, 75651 Cedex 13, Paris, France.

出版信息

J Neurosci Methods. 2001 Oct 30;111(2):83-98. doi: 10.1016/s0165-0270(01)00372-7.

Abstract

The quantification of phase synchrony between neuronal signals is of crucial importance for the study of large-scale interactions in the brain. Two methods have been used to date in neuroscience, based on two distinct approaches which permit a direct estimation of the instantaneous phase of a signal [Phys. Rev. Lett. 81 (1998) 3291; Human Brain Mapping 8 (1999) 194]. The phase is either estimated by using the analytic concept of Hilbert transform or, alternatively, by convolution with a complex wavelet. In both methods the stability of the instantaneous phase over a window of time requires quantification by means of various statistical dependence parameters (standard deviation, Shannon entropy or mutual information). The purpose of this paper is to conduct a direct comparison between these two methods on three signal sets: (1) neural models; (2) intracranial signals from epileptic patients; and (3) scalp EEG recordings. Levels of synchrony that can be considered as reliable are estimated by using the technique of surrogate data. Our results demonstrate that the differences between the methods are minor, and we conclude that they are fundamentally equivalent for the study of neuroelectrical signals. This offers a common language and framework that can be used for future research in the area of synchronization.

摘要

对大脑中大规模相互作用的研究而言,神经元信号之间相位同步性的量化至关重要。迄今为止,神经科学领域已使用了两种方法,这两种方法基于两种不同的途径,能够直接估计信号的瞬时相位[《物理评论快报》81 (1998) 3291;《人类大脑图谱》8 (1999) 194]。相位估计要么使用希尔伯特变换的解析概念,要么通过与复小波进行卷积来实现。在这两种方法中,都需要借助各种统计相关性参数(标准差、香农熵或互信息)来量化一段时间窗口内瞬时相位的稳定性。本文的目的是在三个信号集上对这两种方法进行直接比较:(1) 神经模型;(2) 癫痫患者的颅内信号;以及(3) 头皮脑电图记录。通过使用替代数据技术来估计可被视为可靠的同步水平。我们的结果表明,这两种方法之间的差异很小,并且我们得出结论,对于神经电信号的研究,它们在本质上是等效的。这提供了一种可用于该同步领域未来研究的通用语言和框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验