Klein-Seetharaman J, Hwa J, Cai K, Altenbach C, Hubbell W L, Khorana H G
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
Biochemistry. 2001 Oct 23;40(42):12472-8. doi: 10.1021/bi010746p.
A dark state tertiary structure in the cytoplasmic domain of rhodopsin is presumed to be the key to the restriction of binding of transducin and rhodopsin kinase to rhodopsin. Upon light-activation, this tertiary structure undergoes a conformational change to form a new structure, which is recognized by the above proteins and signal transduction is initiated. In this and the following paper in this issue [Cai, K., Klein-Seetharaman, J., Altenbach, C., Hubbell, W. L., and Khorana, H. G. (2001) Biochemistry 40, 12479-12485], we probe the dark state cytoplasmic domain structure in rhodopsin by investigating proximity between amino acids in different regions of the cytoplasmic face. The approach uses engineered pairs of cysteines at predetermined positions, which are tested for spontaneous formation of disulfide bonds between them, indicative of proximity between the original amino acids. Focusing here on proximity between the native cysteine at position 316 and engineered cysteines at amino acid positions 55-75 in the cytoplasmic sequence connecting helices I-II, disulfide bond formation was studied under strictly defined conditions and plotted as a function of the position of the variable cysteines. An absolute maximum was observed for position 65 with two additional relative maxima for cysteines at positions 61 and 68. The observed disulfide bond formation rates correlate well with proximity of these residues found in the crystal structure of rhodopsin in the dark. Modeling of the engineered cysteines in the crystal structure indicates that small but significant motions are required for productive disulfide bond formation. During these motions, secondary structure elements are retained as indicated by the lack of disulfide bond formation in cysteines that do not face toward Cys316 in the crystal structure model. Such motions may be important in light-induced conformational changes.
视紫红质胞质结构域中的暗态三级结构被认为是限制转导素和视紫红质激酶与视紫红质结合的关键。光激活后,这种三级结构会发生构象变化形成新结构,该新结构会被上述蛋白质识别并启动信号转导。在本期的这篇及后续论文中[蔡,K.,克莱因 - 塞萨拉曼,J.,阿尔滕巴赫,C.,哈贝尔,W. L.,和霍拉纳,H. G.(2001年)《生物化学》40卷,12479 - 12485页],我们通过研究视紫红质胞质面不同区域氨基酸之间的接近程度来探究暗态胞质结构域结构。该方法利用在预定位置设计的半胱氨酸对,测试它们之间二硫键的自发形成情况,这表明原始氨基酸之间的接近程度。这里重点关注位于316位的天然半胱氨酸与位于连接螺旋I - II的胞质序列中55 - 75位氨基酸处设计的半胱氨酸之间的接近程度,在严格定义的条件下研究二硫键的形成,并将其绘制为可变半胱氨酸位置的函数。在65位观察到绝对最大值,在61和68位的半胱氨酸还有两个相对最大值。观察到的二硫键形成速率与视紫红质暗态晶体结构中这些残基的接近程度密切相关。在晶体结构中对设计的半胱氨酸进行建模表明,形成有效的二硫键需要小但显著的运动。在这些运动过程中,二级结构元件得以保留,这由晶体结构模型中不面向316位半胱氨酸的半胱氨酸之间未形成二硫键表明。这种运动可能在光诱导的构象变化中起重要作用。