Suppr超能文献

利用弹性网络模型鉴定膜蛋白中的运动及其实验验证。

Identification of motions in membrane proteins by elastic network models and their experimental validation.

作者信息

Isin Basak, Tirupula Kalyan C, Oltvai Zoltán N, Klein-Seetharaman Judith, Bahar Ivet

机构信息

Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

出版信息

Methods Mol Biol. 2012;914:285-317. doi: 10.1007/978-1-62703-023-6_17.

Abstract

Identifying the functional motions of membrane proteins is difficult because they range from large-scale collective dynamics to local small atomic fluctuations at different timescales that are difficult to measure experimentally due to the hydrophobic nature of these proteins. Elastic Network Models, and in particular their most widely used implementation, the Anisotropic Network Model (ANM), have proven to be useful computational methods in many recent applications to predict membrane protein dynamics. These models are based on the premise that biomolecules possess intrinsic mechanical characteristics uniquely defined by their particular architectures. In the ANM, interactions between residues in close proximity are represented by harmonic potentials with a uniform spring constant. The slow mode shapes generated by the ANM provide valuable information on the global dynamics of biomolecules that are relevant to their function. In its recent extension in the form of ANM-guided molecular dynamics (MD), this coarse-grained approach is augmented with atomic detail. The results from ANM and its extensions can be used to guide experiments and thus speedup the process of quantifying motions in membrane proteins. Testing the predictions can be accomplished through (a) direct observation of motions through studies of structure and biophysical probes, (b) perturbation of the motions by, e.g., cross-linking or site-directed mutagenesis, and (c) by studying the effects of such perturbations on protein function, typically through ligand binding and activity assays. To illustrate the applicability of the combined computational ANM-experimental testing framework to membrane proteins, we describe-alongside the general protocols-here the application of ANM to rhodopsin, a prototypical member of the pharmacologically relevant G-protein coupled receptor family.

摘要

识别膜蛋白的功能运动很困难,因为它们涵盖了从大规模集体动力学到局部小原子波动的不同时间尺度的运动,由于这些蛋白的疏水性,很难通过实验进行测量。弹性网络模型,尤其是其最广泛使用的实现方式——各向异性网络模型(ANM),在最近许多预测膜蛋白动力学的应用中已被证明是有用的计算方法。这些模型基于这样一个前提,即生物分子具有由其特定结构唯一确定的内在机械特性。在ANM中,相邻残基之间的相互作用由具有统一弹簧常数的谐势表示。ANM生成的慢模式形状提供了与生物分子功能相关的全局动力学的有价值信息。在其最近以ANM指导的分子动力学(MD)形式的扩展中,这种粗粒度方法增加了原子细节。ANM及其扩展的结果可用于指导实验,从而加速量化膜蛋白运动的过程。可以通过以下方式测试预测结果:(a)通过结构研究和生物物理探针直接观察运动;(b)例如通过交联或定点诱变对运动进行扰动;(c)通过研究此类扰动对蛋白质功能的影响,通常通过配体结合和活性测定。为了说明联合计算的ANM - 实验测试框架对膜蛋白的适用性,除了一般方案外,我们在此描述ANM在视紫红质上的应用,视紫红质是药理学相关的G蛋白偶联受体家族的典型成员。

相似文献

8
Characterizing protein motions from structure.从结构上描绘蛋白质的运动。
J Mol Graph Model. 2011 Nov;31:41-56. doi: 10.1016/j.jmgm.2011.08.004. Epub 2011 Aug 16.

引用本文的文献

1
Protein Dynamics to Define and Refine Disordered Protein Ensembles.蛋白质动力学定义和细化无规蛋白集合体。
J Phys Chem B. 2022 Mar 10;126(9):1885-1894. doi: 10.1021/acs.jpcb.1c10925. Epub 2022 Feb 25.
2
Computational Ways to Enhance Protein Inhibitor Design.增强蛋白质抑制剂设计的计算方法。
Front Mol Biosci. 2021 Feb 3;7:607323. doi: 10.3389/fmolb.2020.607323. eCollection 2020.
6
Characterizing and Predicting Protein Hinges for Mechanistic Insight.蛋白质铰链的特征化和预测:深入了解其机制。
J Mol Biol. 2020 Jan 17;432(2):508-522. doi: 10.1016/j.jmb.2019.11.018. Epub 2019 Nov 29.

本文引用的文献

1
ProDy: protein dynamics inferred from theory and experiments.ProDy:从理论和实验推断的蛋白质动力学。
Bioinformatics. 2011 Jun 1;27(11):1575-7. doi: 10.1093/bioinformatics/btr168. Epub 2011 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验