Dey Bijoy K, Janicki Marek R, Ayers Paul W
Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada.
J Chem Phys. 2004 Oct 8;121(14):6667-79. doi: 10.1063/1.1790851.
Classical dynamics can be described with Newton's equation of motion or, totally equivalently, using the Hamilton-Jacobi equation. Here, the possibility of using the Hamilton-Jacobi equation to describe chemical reaction dynamics is explored. This requires an efficient computational approach for constructing the physically and chemically relevant solutions to the Hamilton-Jacobi equation; here we solve Hamilton-Jacobi equations on a Cartesian grid using Sethian's fast marching method. Using this method, we can--starting from an arbitrary initial conformation--find reaction paths that minimize the action or the time. The method is demonstrated by computing the mechanism for two different systems: a model system with four different stationary configurations and the H+H(2)-->H(2)+H reaction. Least-time paths (termed brachistochrones in classical mechanics) seem to be a suitable chioce for the reaction coordinate, allowing one to determine the key intermediates and final product of a chemical reaction. For conservative systems the Hamilton-Jacobi equation does not depend on the time, so this approach may be useful for simulating systems where important motions occur on a variety of different time scales.
经典动力学可以用牛顿运动方程来描述,或者完全等效地,使用哈密顿 - 雅可比方程来描述。在此,探索了使用哈密顿 - 雅可比方程来描述化学反应动力学的可能性。这需要一种有效的计算方法来构建哈密顿 - 雅可比方程的物理和化学相关解;在这里,我们使用塞西安的快速行进方法在笛卡尔网格上求解哈密顿 - 雅可比方程。使用这种方法,我们可以从任意初始构象出发,找到使作用量或时间最小化的反应路径。通过计算两个不同系统的机理来演示该方法:一个具有四种不同稳定构型的模型系统和H + H₂→H₂ + H反应。最短时间路径(在经典力学中称为最速降线)似乎是反应坐标的合适选择,从而能够确定化学反应的关键中间体和最终产物。对于保守系统,哈密顿 - 雅可比方程不依赖于时间,因此这种方法可能有助于模拟重要运动发生在各种不同时间尺度上的系统。