Suppr超能文献

设计一种人工神经网络与粒子群优化的混合方法用于从大肠CT图像中诊断息肉

Designing a Hybrid Method of Artificial Neural Network and Particle Swarm Optimization to Diagnosis Polyps from Colorectal CT Images.

作者信息

Harchegani Hossein Beigi, Moghaddasi Hamid

机构信息

Health Information Technology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.

Professor of Health Information Management and Medical Informatics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Int J Prev Med. 2024 Jan 31;15:4. doi: 10.4103/ijpvm.ijpvm_373_22. eCollection 2024.

Abstract

BACKGROUND

Since colorectal cancer is one of the most important types of cancer in the world that often leads to death, computer-aided diagnostic (CAD) systems are a promising solution for early diagnosis of this disease with fewer side effects than conventional colonoscopy. Therefore, the aim of this research is to design a CAD system for processing colorectal Computerized Tomography (CT) images using a combination of an artificial neural network and a particle swarm optimizer.

METHOD

First, the data set of the research was created from the colorectal CT images of the patients of Loghman-e Hakim Hospitals in Tehran and Al-Zahra Hospitals in Isfahan who underwent colorectal CT imaging and had conventional colonoscopy done within a maximum period of one month after that. Then the steps of model implementation, including electronic cleansing of images, segmentation, labeling of samples, extraction of features, and training and optimization of the artificial neural network (ANN) with a particle swarm optimizer, were performed. A binomial statistical test and confusion matrix calculation were used to evaluate the model.

RESULTS

The values of accuracy, sensitivity, and specificity of the model with a value = 0.000 as a result of the McNemar test were 0.9354, 0.9298, and 0.9889, respectively. Also, the result of the value of the binomial test of the ratio of diagnosis of the model and the radiologist from Loqman Hakim and Al-Zahra Hospitals was 0.044 and 0.021, respectively.

CONCLUSIONS

The results of statistical tests and research variables show the efficiency of the CTC-CAD system created based on the hybrid of the ANN and particle swarm optimization compared to the opinion of radiologists in diagnosing colorectal polyps from CTC images.

摘要

背景

由于结直肠癌是世界上最重要的癌症类型之一,常导致死亡,计算机辅助诊断(CAD)系统是早期诊断该疾病的一种有前景的解决方案,其副作用比传统结肠镜检查更少。因此,本研究的目的是设计一种CAD系统,使用人工神经网络和粒子群优化器的组合来处理结直肠计算机断层扫描(CT)图像。

方法

首先,研究数据集来自德黑兰洛格曼 - 哈基姆医院和伊斯法罕扎赫拉医院的患者的结直肠CT图像,这些患者接受了结直肠CT成像,并在之后最长一个月内进行了传统结肠镜检查。然后执行模型实现的步骤,包括图像的电子清洗、分割、样本标记、特征提取,以及使用粒子群优化器对人工神经网络(ANN)进行训练和优化。使用二项式统计检验和混淆矩阵计算来评估模型。

结果

由于McNemar检验,模型的准确率、灵敏度和特异性值分别为0.9354、0.9298和0.9889,值为0.000。此外,该模型与来自洛格曼·哈基姆医院和扎赫拉医院的放射科医生的诊断率的二项式检验值分别为0.044和0.021。

结论

统计检验和研究变量的结果表明,与放射科医生从CTC图像诊断结直肠息肉的观点相比,基于人工神经网络和粒子群优化混合创建的CTC - CAD系统具有有效性。

相似文献

本文引用的文献

7
Registration under topological change for CT colonography.CT 结肠成像的拓扑学变化注册。
IEEE Trans Biomed Eng. 2011 May;58(5):1403-11. doi: 10.1109/TBME.2011.2105267. Epub 2011 Jan 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验