Fu Zhisong, Jeong Won-Ki, Pan Yongsheng, Kirby Robert M, Whitaker Ross T
The Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112.
SIAM J Sci Comput. 2011;33(5):2468-2488. doi: 10.1137/100788951. Epub 2011 Oct 6.
This paper presents an efficient, fine-grained parallel algorithm for solving the Eikonal equation on triangular meshes. The Eikonal equation, and the broader class of Hamilton-Jacobi equations to which it belongs, have a wide range of applications from geometric optics and seismology to biological modeling and analysis of geometry and images. The ability to solve such equations accurately and efficiently provides new capabilities for exploring and visualizing parameter spaces and for solving inverse problems that rely on such equations in the forward model. Efficient solvers on state-of-the-art, parallel architectures require new algorithms that are not, in many cases, optimal, but are better suited to synchronous updates of the solution. In previous work [W. K. Jeong and R. T. Whitaker, SIAM J. Sci. Comput., 30 (2008), pp. 2512-2534], the authors proposed the fast iterative method (FIM) to efficiently solve the Eikonal equation on regular grids. In this paper we extend the fast iterative method to solve Eikonal equations efficiently on triangulated domains on the CPU and on parallel architectures, including graphics processors. We propose a new local update scheme that provides solutions of first-order accuracy for both architectures. We also propose a novel triangle-based update scheme and its corresponding data structure for efficient irregular data mapping to parallel single-instruction multiple-data (SIMD) processors. We provide detailed descriptions of the implementations on a single CPU, a multicore CPU with shared memory, and SIMD architectures with comparative results against state-of-the-art Eikonal solvers.
本文提出了一种高效的细粒度并行算法,用于在三角形网格上求解程函方程。程函方程及其所属的更广泛的哈密顿 - 雅可比方程类,在从几何光学、地震学到生物建模以及几何与图像分析等广泛领域都有应用。准确且高效地求解此类方程的能力为探索和可视化参数空间以及解决正向模型中依赖此类方程的反问题提供了新的能力。在最先进的并行架构上实现高效求解器需要新的算法,在许多情况下,这些算法并非最优,但更适合解的同步更新。在之前的工作[W. K. 郑(W. K. Jeong)和R. T. 惠特克(R. T. Whitaker),《SIAM科学计算杂志》(SIAM J. Sci. Comput.),30(2008),第2512 - 2534页]中,作者提出了快速迭代方法(FIM)来在规则网格上高效求解程函方程。在本文中,我们将快速迭代方法扩展到在CPU以及包括图形处理器在内的并行架构上的三角剖分域上高效求解程函方程。我们提出了一种新的局部更新方案,该方案为两种架构都提供一阶精度的解。我们还提出了一种新颖的基于三角形的更新方案及其相应的数据结构,用于将不规则数据高效映射到并行单指令多数据(SIMD)处理器。我们详细描述了在单个CPU、具有共享内存的多核CPU以及SIMD架构上的实现,并与最先进的程函求解器进行了对比。