Suppr超能文献

一种用于求解三角剖分曲面上的程函方程的快速迭代方法。

A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TRIANGULATED SURFACES.

作者信息

Fu Zhisong, Jeong Won-Ki, Pan Yongsheng, Kirby Robert M, Whitaker Ross T

机构信息

The Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112.

出版信息

SIAM J Sci Comput. 2011;33(5):2468-2488. doi: 10.1137/100788951. Epub 2011 Oct 6.

Abstract

This paper presents an efficient, fine-grained parallel algorithm for solving the Eikonal equation on triangular meshes. The Eikonal equation, and the broader class of Hamilton-Jacobi equations to which it belongs, have a wide range of applications from geometric optics and seismology to biological modeling and analysis of geometry and images. The ability to solve such equations accurately and efficiently provides new capabilities for exploring and visualizing parameter spaces and for solving inverse problems that rely on such equations in the forward model. Efficient solvers on state-of-the-art, parallel architectures require new algorithms that are not, in many cases, optimal, but are better suited to synchronous updates of the solution. In previous work [W. K. Jeong and R. T. Whitaker, SIAM J. Sci. Comput., 30 (2008), pp. 2512-2534], the authors proposed the fast iterative method (FIM) to efficiently solve the Eikonal equation on regular grids. In this paper we extend the fast iterative method to solve Eikonal equations efficiently on triangulated domains on the CPU and on parallel architectures, including graphics processors. We propose a new local update scheme that provides solutions of first-order accuracy for both architectures. We also propose a novel triangle-based update scheme and its corresponding data structure for efficient irregular data mapping to parallel single-instruction multiple-data (SIMD) processors. We provide detailed descriptions of the implementations on a single CPU, a multicore CPU with shared memory, and SIMD architectures with comparative results against state-of-the-art Eikonal solvers.

摘要

本文提出了一种高效的细粒度并行算法,用于在三角形网格上求解程函方程。程函方程及其所属的更广泛的哈密顿 - 雅可比方程类,在从几何光学、地震学到生物建模以及几何与图像分析等广泛领域都有应用。准确且高效地求解此类方程的能力为探索和可视化参数空间以及解决正向模型中依赖此类方程的反问题提供了新的能力。在最先进的并行架构上实现高效求解器需要新的算法,在许多情况下,这些算法并非最优,但更适合解的同步更新。在之前的工作[W. K. 郑(W. K. Jeong)和R. T. 惠特克(R. T. Whitaker),《SIAM科学计算杂志》(SIAM J. Sci. Comput.),30(2008),第2512 - 2534页]中,作者提出了快速迭代方法(FIM)来在规则网格上高效求解程函方程。在本文中,我们将快速迭代方法扩展到在CPU以及包括图形处理器在内的并行架构上的三角剖分域上高效求解程函方程。我们提出了一种新的局部更新方案,该方案为两种架构都提供一阶精度的解。我们还提出了一种新颖的基于三角形的更新方案及其相应的数据结构,用于将不规则数据高效映射到并行单指令多数据(SIMD)处理器。我们详细描述了在单个CPU、具有共享内存的多核CPU以及SIMD架构上的实现,并与最先进的程函求解器进行了对比。

相似文献

1
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TRIANGULATED SURFACES.
SIAM J Sci Comput. 2011;33(5):2468-2488. doi: 10.1137/100788951. Epub 2011 Oct 6.
2
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TETRAHEDRAL DOMAINS.
SIAM J Sci Comput. 2013;35(5):c473-c494. doi: 10.1137/120881956.
3
Wavefront Marching Methods: A Unified Algorithm to Solve Eikonal and Static Hamilton-Jacobi Equations.
IEEE Trans Pattern Anal Mach Intell. 2021 Nov;43(11):4177-4188. doi: 10.1109/TPAMI.2020.2993500. Epub 2021 Oct 1.
4
Fast methods for the Eikonal and related Hamilton- Jacobi equations on unstructured meshes.
Proc Natl Acad Sci U S A. 2000 May 23;97(11):5699-703. doi: 10.1073/pnas.090060097.
5
Multi-stencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains.
IEEE Trans Pattern Anal Mach Intell. 2007 Sep;29(9):1563-74. doi: 10.1109/TPAMI.2007.1154.
6
Interactive visualization of volumetric white matter connectivity in DT-MRI using a parallel-hardware Hamilton-Jacobi solver.
IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1480-7. doi: 10.1109/TVCG.2007.70571.
8
A fast marching level set method for monotonically advancing fronts.
Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1591-5. doi: 10.1073/pnas.93.4.1591.
9
Hamilton-Jacobi approach to photon wave mechanics: near-field aspects.
J Microsc. 2008 Feb;229(Pt 2):331-6. doi: 10.1111/j.1365-2818.2008.01909.x.
10
A conduction velocity adapted eikonal model for electrophysiology problems with re-excitability evaluation.
Med Image Anal. 2018 Jan;43:186-197. doi: 10.1016/j.media.2017.11.002. Epub 2017 Nov 3.

引用本文的文献

1
PIEMAP: Personalized Inverse Eikonal Model from cardiac Electro-Anatomical Maps.
Stat Atlases Comput Models Heart. 2021;12592:76-86. doi: 10.1007/978-3-030-68107-4_8. Epub 2021 Jan 29.
2
A Review of Personalised Cardiac Computational Modelling Using Electroanatomical Mapping Data.
Arrhythm Electrophysiol Rev. 2024 May 20;13:e08. doi: 10.15420/aer.2023.25. eCollection 2024.
4
Path Planning for Autonomous Mobile Robots: A Review.
Sensors (Basel). 2021 Nov 26;21(23):7898. doi: 10.3390/s21237898.
5
GEASI: Geodesic-based earliest activation sites identification in cardiac models.
Int J Numer Method Biomed Eng. 2021 Aug;37(8):e3505. doi: 10.1002/cnm.3505. Epub 2021 Jul 13.
6
An Inverse Eikonal Method for Identifying Ventricular Activation Sequences from Epicardial Activation Maps.
J Comput Phys. 2020 Jul 3;419. doi: 10.1016/j.jcp.2020.109700. eCollection 2020 Oct 15.
7
Evaluation of a Rapid Anisotropic Model for ECG Simulation.
Front Physiol. 2017 May 2;8:265. doi: 10.3389/fphys.2017.00265. eCollection 2017.
8
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TETRAHEDRAL DOMAINS.
SIAM J Sci Comput. 2013;35(5):c473-c494. doi: 10.1137/120881956.
9
Geodesic distances to landmarks for dense correspondence on ensembles of complex shapes.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):19-26. doi: 10.1007/978-3-642-40763-5_3.
10
Geometric correspondence for ensembles of nonregular shapes.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):368-75. doi: 10.1007/978-3-642-23629-7_45.

本文引用的文献

1
Interactive visualization of volumetric white matter connectivity in DT-MRI using a parallel-hardware Hamilton-Jacobi solver.
IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1480-7. doi: 10.1109/TVCG.2007.70571.
2
A fast marching level set method for monotonically advancing fronts.
Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1591-5. doi: 10.1073/pnas.93.4.1591.
3
Computing geodesic paths on manifolds.
Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8431-5. doi: 10.1073/pnas.95.15.8431.
4
Spreading of excitation in 3-D models of the anisotropic cardiac tissue. I. Validation of the eikonal model.
Math Biosci. 1993 Feb;113(2):145-209. doi: 10.1016/0025-5564(93)90001-q.
5
An eikonal-curvature equation for action potential propagation in myocardium.
J Math Biol. 1991;29(7):629-51. doi: 10.1007/BF00163916.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验