Ardell D H, Sella G
Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden.
J Mol Evol. 2001 Oct-Nov;53(4-5):269-81. doi: 10.1007/s002390010217.
We simulate a deterministic population genetic model for the coevolution of genetic codes and protein-coding genes. We use very simple assumptions about translation, mutation, and protein fitness to calculate mutation-selection equilibria of codon frequencies and fitness in a large asexual population with a given genetic code. We then compute the fitnesses of altered genetic codes that compete to invade the population by translating its genes with higher fitness. Codes and genes coevolve in a succession of stages, alternating between genetic equilibration and code invasion, from an initial wholly ambiguous coding state to a diversified frozen coding state. Our simulations almost always resulted in partially redundant frozen genetic codes. Also, the range of simulated physicochemical properties among encoded amino acids in frozen codes was always less than maximal. These results did not require the assumption of historical constraints on the number and type of amino acids available to codes nor on the complexity of proteins, stereochemical constraints on the translational apparatus, nor mechanistic constraints on genetic code change. Both the extent and timing of amino-acid diversification in genetic codes were strongly affected by the message mutation rate and strength of missense selection. Our results suggest that various omnipresent phenomena that distribute codons over sites with different selective requirements--such as the persistence of nonsynonymous mutations at equilibrium, the positive selection of the same codon in different types of sites, and translational ambiguity--predispose the evolution of redundancy and of reduced amino acid diversity in genetic codes.
我们模拟了一个用于遗传密码和蛋白质编码基因共同进化的确定性群体遗传模型。我们对翻译、突变和蛋白质适应性采用非常简单的假设,以计算在具有给定遗传密码的大型无性群体中密码子频率和适应性的突变 - 选择平衡。然后,我们计算通过以更高适应性翻译群体基因来竞争入侵该群体的改变后的遗传密码的适应性。密码和基因在一系列阶段中共同进化,在遗传平衡和密码入侵之间交替,从最初完全模糊的编码状态到多样化的固定编码状态。我们的模拟几乎总是导致部分冗余的固定遗传密码。此外,固定密码中编码氨基酸之间模拟的物理化学性质范围总是小于最大值。这些结果不需要假设对密码可用的氨基酸数量和类型存在历史限制,也不需要假设对蛋白质复杂性、对翻译装置的立体化学限制或对遗传密码变化的机制限制。遗传密码中氨基酸多样化的程度和时间都受到错义突变率和错义选择强度的强烈影响。我们的结果表明,各种普遍存在的现象,如平衡时非同义突变的持续存在、不同类型位点中相同密码子的正选择以及翻译模糊性,这些现象将密码子分布在具有不同选择要求的位点上,使得遗传密码中冗余和氨基酸多样性降低的进化成为可能。