University of A Coruña, Department of Computer Science, 15071 A Coruña, Spain.
J Theor Biol. 2010 Jun 7;264(3):854-65. doi: 10.1016/j.jtbi.2010.02.041. Epub 2010 Feb 26.
We used simulated evolution to study the adaptability level of the canonical genetic code. An adapted genetic algorithm (GA) searches for optimal hypothetical codes. Adaptability is measured as the average variation of the hydrophobicity that the encoded amino acids undergo when errors or mutations are present in the codons of the hypothetical codes. Different types of mutations and point mutation rates that depend on codon base number are considered in this study. Previous works have used statistical approaches based on randomly generated alternative codes or have used local search techniques to determine an optimum value. In this work, we emphasize what can be concluded from the use of simulated evolution considering the results of previous works. The GA provides more information about the difficulty of the evolution of codes, without contradicting previous studies using statistical or engineering approaches. The GA also shows that, within the coevolution theory, the third base clearly improves the adaptability of the current genetic code.
我们使用模拟进化来研究规范遗传密码的适应能力水平。经过改进的遗传算法 (GA) 可用于搜索最佳假设代码。适应能力的衡量标准是,在假设代码的密码子中存在错误或突变时,编码氨基酸的疏水性平均变化。本研究考虑了不同类型的突变和依赖于密码子碱基数的点突变率。以前的工作使用基于随机生成的替代代码的统计方法,或者使用局部搜索技术来确定最佳值。在这项工作中,我们强调了从模拟进化的角度可以得出什么结论,同时考虑到以前使用统计或工程方法的研究结果。GA 提供了更多关于代码进化难度的信息,而不会与以前使用统计或工程方法的研究结果相矛盾。GA 还表明,在共进化理论中,第三碱基明显提高了当前遗传密码的适应能力。