Suppr超能文献

Marine protozoa produce organic matter with a high affinity for PCBs during grazing.

作者信息

Kujawinski E B, Farrington J W, Moffett J W

机构信息

Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Massachusetts 02543, USA.

出版信息

Environ Sci Technol. 2001 Oct 15;35(20):4060-5. doi: 10.1021/es001536n.

Abstract

Processes influencing organic carbon distribution and composition can control the speciation of organic contaminants such as polychlorinated biphenyls (PCBs) and ultimately determine their residence time in aquatic environments. Protozoan grazers are active in the remineralization and recycling of organic material both in the water column and at the sediment-water interface. Thus, they influence the quality and quantity of potential PCB binding substrates in the suspended and dissolved phases of aqueous systems. In this study, common headspace systems were used to compare the chlorobiphenyl-binding affinity of dissolved organic carbon (DOC) in protozoan and bacterial culture filtrates (<0.2 microm) relative to DOC in a seawater control. Culture filtrates from three marine protozoan species were compared-Uronema sp., Cafeteria sp., and Paraphysomonas imperforata. Each protozoan species was fed the same bacterial prey, Halomonas halodurans, which was also used as a bacterial control. Affinities of culture DOC for [14C]3,3',4,4'-tetrachlorobiphenyl (IUPAC 77) were normalized to DOC and surfactant concentrations. Values of DOC equilibrium partition coefficients (K(DOC)) ranged from 10(4.6) in seawater (Vineyard Sound, MA) to 10(5.4) and 10(5.5) in protist cultures, indicating that grazer-modified DOC was a better sorbent for PCBs than DOC in bacterial or seawater controls.

摘要

相似文献

1
Marine protozoa produce organic matter with a high affinity for PCBs during grazing.
Environ Sci Technol. 2001 Oct 15;35(20):4060-5. doi: 10.1021/es001536n.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验