Suppr超能文献

通过双突变循环的距离限制和柔性对接确定的干扰素受体复合物结构。

Structure of the interferon-receptor complex determined by distance constraints from double-mutant cycles and flexible docking.

作者信息

Roisman L C, Piehler J, Trosset J Y, Scheraga H A, Schreiber G

机构信息

Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel.

出版信息

Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13231-6. doi: 10.1073/pnas.221290398.

Abstract

The pleiotropic activity of type I interferons has been attributed to the specific interaction of IFN with the cell-surface receptor components ifnar1 and ifnar2. To date, the structure of IFN has been solved, but not that of the receptor or the complex. In this study, the structure of the IFN-alpha 2-ifnar2 complex was generated with a docking procedure, using nuclear Overhauser effect-like distance constraints obtained from double-mutant cycle experiments. The interaction free energy between 13 residues of the ligand and 11 of the receptor was measured by double-mutant cycles. Of the 100 pairwise interactions probed, five pairs of residues were found to interact. These five interactions were incorporated as distance constraints into the flexible docking program prodock by using fixed and movable energy-gradient grids attached to the receptor and ligand, respectively. Multistart minimization and Monte Carlo minimization docking of IFN-alpha 2 onto ifnar2 converged to a well-defined average structure, with the five distance constraints being satisfied. Furthermore, no structural artifacts or intraloop energy strain were observed. The mutual binding sites on IFN-alpha 2 and ifnar2 predicted from the model showed an almost complete superposition with the ones determined from mutagenesis studies. Based on this structure, differences in IFN-alpha 2 versus IFN-beta binding are discussed.

摘要

I型干扰素的多效性活性归因于IFN与细胞表面受体成分ifnar1和ifnar2的特异性相互作用。迄今为止,IFN的结构已得到解析,但受体或复合物的结构尚未解析。在本研究中,利用从双突变循环实验获得的类似核Overhauser效应的距离约束,通过对接程序生成了IFN-α2-ifnar2复合物的结构。通过双突变循环测量配体的13个残基与受体的11个残基之间的相互作用自由能。在探测的100对相互作用中,发现有五对残基相互作用。通过分别连接到受体和配体上的固定和可移动能量梯度网格,将这五种相互作用作为距离约束纳入灵活对接程序prodock。将IFN-α2多起始最小化和蒙特卡罗最小化对接至ifnar2,收敛到一个明确的平均结构,满足五个距离约束。此外,未观察到结构伪影或环内能量应变。从模型预测的IFN-α2和ifnar2上的相互结合位点与诱变研究确定的位点几乎完全重叠。基于此结构,讨论了IFN-α2与IFN-β结合的差异。

相似文献

引用本文的文献

1
Predicting Protein-Ligand Docking Structure with Graph Neural Network.基于图神经网络的蛋白配体对接结构预测。
J Chem Inf Model. 2022 Jun 27;62(12):2923-2932. doi: 10.1021/acs.jcim.2c00127. Epub 2022 Jun 14.
3
Determining protein structures using deep mutagenesis.利用深度突变技术确定蛋白质结构。
Nat Genet. 2019 Jul;51(7):1177-1186. doi: 10.1038/s41588-019-0431-x. Epub 2019 Jun 17.

本文引用的文献

1
Exact analytical loop closure in proteins using polynomial equations.使用多项式方程实现蛋白质中精确的解析闭环。
J Comput Chem. 1999 Jun;20(8):819-844. doi: 10.1002/(SICI)1096-987X(199906)20:8<819::AID-JCC8>3.0.CO;2-Y.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验