Suppr超能文献

基于图神经网络的蛋白配体对接结构预测。

Predicting Protein-Ligand Docking Structure with Graph Neural Network.

机构信息

Department of Computer Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States.

Departments of Pharmacology and Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033, United States.

出版信息

J Chem Inf Model. 2022 Jun 27;62(12):2923-2932. doi: 10.1021/acs.jcim.2c00127. Epub 2022 Jun 14.

Abstract

Modern day drug discovery is extremely expensive and time consuming. Although computational approaches help accelerate and decrease the cost of drug discovery, existing computational software packages for docking-based drug discovery suffer from both low accuracy and high latency. A few recent machine learning-based approaches have been proposed for virtual screening by improving the ability to evaluate protein-ligand binding affinity, but such methods rely heavily on conventional docking software to sample docking poses, which results in excessive execution latencies. Here, we propose and evaluate a novel graph neural network (GNN)-based framework, MedusaGraph, which includes both pose-prediction (sampling) and pose-selection (scoring) models. Unlike the previous machine learning-centric studies, MedusaGraph generates the docking poses directly and achieves from 10 to 100 times speedup compared to state-of-the-art approaches, while having a slightly better docking accuracy.

摘要

现代药物发现非常昂贵且耗时。尽管计算方法有助于加速和降低药物发现的成本,但基于对接的现有计算软件包在准确性和延迟方面都存在问题。最近提出了一些基于机器学习的方法来通过提高评估蛋白质-配体结合亲和力的能力来进行虚拟筛选,但是这些方法严重依赖于传统的对接软件来采样对接构象,这导致了过高的执行延迟。在这里,我们提出并评估了一种新的基于图神经网络(GNN)的框架 MedusaGraph,它包括构象预测(采样)和构象选择(打分)模型。与以前的以机器学习为中心的研究不同,MedusaGraph 直接生成对接构象,与最先进的方法相比,速度提高了 10 到 100 倍,同时对接精度略有提高。

相似文献

1
Predicting Protein-Ligand Docking Structure with Graph Neural Network.基于图神经网络的蛋白配体对接结构预测。
J Chem Inf Model. 2022 Jun 27;62(12):2923-2932. doi: 10.1021/acs.jcim.2c00127. Epub 2022 Jun 14.
7
Efficient and accurate large library ligand docking with KarmaDock.使用 KarmaDock 实现高效准确的大型配体库对接。
Nat Comput Sci. 2023 Sep;3(9):789-804. doi: 10.1038/s43588-023-00511-5. Epub 2023 Sep 21.
8
Machine learning in computational docking.计算对接中的机器学习。
Artif Intell Med. 2015 Mar;63(3):135-52. doi: 10.1016/j.artmed.2015.02.002. Epub 2015 Feb 16.

引用本文的文献

2
Improved Prediction of Ligand-Protein Binding Affinities by Meta-modeling.通过元建模改进配体-蛋白质结合亲和力的预测
J Chem Inf Model. 2024 Dec 9;64(23):8684-8704. doi: 10.1021/acs.jcim.4c01116. Epub 2024 Nov 22.
3

本文引用的文献

1
Protein Docking Model Evaluation by Graph Neural Networks.基于图神经网络的蛋白质对接模型评估
Front Mol Biosci. 2021 May 25;8:647915. doi: 10.3389/fmolb.2021.647915. eCollection 2021.
9
Comparative Assessment of Scoring Functions: The CASF-2016 Update.评分函数的比较评估:CASF-2016 更新。
J Chem Inf Model. 2019 Feb 25;59(2):895-913. doi: 10.1021/acs.jcim.8b00545. Epub 2018 Dec 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验