Suppr超能文献

用卷积神经网络指导传统蛋白质-配体对接软件

Guiding Conventional Protein-Ligand Docking Software with Convolutional Neural Networks.

作者信息

Jiang Huaipan, Fan Mengran, Wang Jian, Sarma Anup, Mohanty Shruti, Dokholyan Nikolay V, Mahdavi Mehrdad, Kandemir Mahmut T

机构信息

Department of Computer Science and Engineering, Pennsylvania State University, State College 16802, United States.

Departments of Pharmacology and Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey 17033, United States.

出版信息

J Chem Inf Model. 2020 Oct 26;60(10):4594-4602. doi: 10.1021/acs.jcim.0c00542. Epub 2020 Oct 14.

Abstract

The high-performance computational techniques have brought significant benefits for drug discovery efforts in recent decades. One of the most challenging problems in drug discovery is the protein-ligand binding pose prediction. To predict the most stable structure of the complex, the performance of conventional structure-based molecular docking methods heavily depends on the accuracy of scoring or energy functions (as an approximation of affinity) for each pose of the protein-ligand docking complex to effectively guide the search in an exponentially large solution space. However, due to the heterogeneity of molecular structures, the existing scoring calculation methods are either tailored to a particular data set or fail to exhibit high accuracy. In this paper, we propose a convolutional neural network (CNN)-based model that learns to predict the stability factor of the protein-ligand complex and exhibits the ability of CNNs to improve the existing docking software. Evaluated results on PDBbind data set indicate that our approach reduces the execution time of the traditional docking-based method while improving the accuracy. Our code, experiment scripts, and pretrained models are available at https://github.com/j9650/MedusaNet.

摘要

近几十年来,高性能计算技术给药物研发工作带来了显著益处。药物研发中最具挑战性的问题之一是蛋白质-配体结合姿态预测。为预测复合物的最稳定结构,传统的基于结构的分子对接方法的性能在很大程度上取决于对蛋白质-配体对接复合物每个姿态的评分或能量函数(作为亲和力的近似值)的准确性,以便在指数级大的解空间中有效地指导搜索。然而,由于分子结构的异质性,现有的评分计算方法要么是针对特定数据集定制的,要么无法展现出高精度。在本文中,我们提出了一种基于卷积神经网络(CNN)的模型,该模型能够学习预测蛋白质-配体复合物的稳定性因子,并展现出卷积神经网络改进现有对接软件的能力。在PDBbind数据集上的评估结果表明,我们的方法在提高准确性的同时,减少了基于传统对接方法的执行时间。我们的代码、实验脚本和预训练模型可在https://github.com/j9650/MedusaNet获取。

相似文献

2
Predicting Protein-Ligand Docking Structure with Graph Neural Network.基于图神经网络的蛋白配体对接结构预测。
J Chem Inf Model. 2022 Jun 27;62(12):2923-2932. doi: 10.1021/acs.jcim.2c00127. Epub 2022 Jun 14.
8
Advances in Docking.对接技术的新进展。
Curr Med Chem. 2019;26(42):7555-7580. doi: 10.2174/0929867325666180904115000.
9
Machine learning in computational docking.计算对接中的机器学习。
Artif Intell Med. 2015 Mar;63(3):135-52. doi: 10.1016/j.artmed.2015.02.002. Epub 2015 Feb 16.

引用本文的文献

5
Chemical Space Exploration with Active Learning and Alchemical Free Energies.主动学习和非热力学自由能在化学空间探索中的应用。
J Chem Theory Comput. 2022 Oct 11;18(10):6259-6270. doi: 10.1021/acs.jctc.2c00752. Epub 2022 Sep 23.
6
Predicting Protein-Ligand Docking Structure with Graph Neural Network.基于图神经网络的蛋白配体对接结构预测。
J Chem Inf Model. 2022 Jun 27;62(12):2923-2932. doi: 10.1021/acs.jcim.2c00127. Epub 2022 Jun 14.
10
GNINA 1.0: molecular docking with deep learning.GNINA 1.0:基于深度学习的分子对接
J Cheminform. 2021 Jun 9;13(1):43. doi: 10.1186/s13321-021-00522-2.

本文引用的文献

4
ChEMBL: towards direct deposition of bioassay data.ChEMBL:致力于直接生成生物测定数据。
Nucleic Acids Res. 2019 Jan 8;47(D1):D930-D940. doi: 10.1093/nar/gky1075.
5
Deep reinforcement learning for de novo drug design.基于深度强化学习的从头药物设计。
Sci Adv. 2018 Jul 25;4(7):eaap7885. doi: 10.1126/sciadv.aap7885. eCollection 2018 Jul.
8
Protein-Ligand Scoring with Convolutional Neural Networks.基于卷积神经网络的蛋白质-配体评分
J Chem Inf Model. 2017 Apr 24;57(4):942-957. doi: 10.1021/acs.jcim.6b00740. Epub 2017 Apr 11.
10
Boosting Docking-Based Virtual Screening with Deep Learning.深度学习增强基于对接的虚拟筛选。
J Chem Inf Model. 2016 Dec 27;56(12):2495-2506. doi: 10.1021/acs.jcim.6b00355. Epub 2016 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验