Suppr超能文献

病毒逃逸机制——病毒传授的脱身术。

Viral escape mechanisms--escapology taught by viruses.

作者信息

Lucas M, Karrer U, Lucas A, Klenerman P

机构信息

Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK.

出版信息

Int J Exp Pathol. 2001 Oct;82(5):269-86. doi: 10.1046/j.1365-2613.2001.00204.x.

Abstract

Viruses have 'studied' immunology over millions of years of coevolution with their hosts. During this ongoing education they have developed countless mechanisms to escape from the host's immune system. To illustrate the most common strategies of viral immune escape we have focused on two murine models of persistent infection, lymphocytic choriomeningitis virus (LCMV) and murine cytomegalovirus (MCMV). LCMV is a fast replicating small RNA virus with a genome prone to mutations. Therefore, LCMV escapes from the immune system mainly by two strategies: 'speed' and 'shape change'. At the opposite extreme, MCMV is a large, complex DNA virus with a more rigid genome and thus the strategies used by LCMV are no option. However, MCMV has the coding capacity for additional genes which interfere specifically with the immune response of the host. These escape strategies have been described as 'camouflage' and 'sabotage'. Using these simple concepts we describe the spectrum of viral escapology, giving credit not only to the researchers who uncovered this fascinating area of immunology but also to the viruses themselves, who still have a few lessons to teach.

摘要

在与宿主数百万年的共同进化过程中,病毒“学习”了免疫学。在这个持续的过程中,它们发展出了无数逃避宿主免疫系统的机制。为了阐述病毒免疫逃逸的最常见策略,我们重点研究了两种持续性感染的小鼠模型:淋巴细胞性脉络丛脑膜炎病毒(LCMV)和小鼠巨细胞病毒(MCMV)。LCMV是一种快速复制的小RNA病毒,其基因组容易发生突变。因此,LCMV主要通过两种策略逃避免疫系统:“速度”和“形状改变”。与之相反,MCMV是一种大型复杂的DNA病毒,其基因组更为稳定,因此LCMV所采用的策略并不适用。然而,MCMV具有编码额外基因的能力,这些基因能特异性干扰宿主的免疫反应。这些逃逸策略被描述为“伪装”和“破坏”。利用这些简单的概念,我们描述了病毒逃逸学的范畴,这不仅归功于那些揭示了这一迷人免疫学领域的研究人员,也归功于病毒本身,它们仍有一些经验值得借鉴。

相似文献

1
Viral escape mechanisms--escapology taught by viruses.
Int J Exp Pathol. 2001 Oct;82(5):269-86. doi: 10.1046/j.1365-2613.2001.00204.x.
2
Heterologous Immunity and Persistent Murine Cytomegalovirus Infection.
J Virol. 2017 Jan 3;91(2). doi: 10.1128/JVI.01386-16. Print 2017 Jan 15.
7
Mast Cells Modulate Antigen-Specific CD8 T Cell Activation During LCMV Infection.
Front Immunol. 2021 Jun 14;12:688347. doi: 10.3389/fimmu.2021.688347. eCollection 2021.
8
10
Cross-reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses.
J Exp Med. 1994 Jun 1;179(6):1933-43. doi: 10.1084/jem.179.6.1933.

引用本文的文献

1
Exploring the oncogenic potential of SARS-CoV-2 in the gastrointestinal tract.
World J Gastroenterol. 2025 Aug 21;31(31):105665. doi: 10.3748/wjg.v31.i31.105665.
2
Over time analysis of the codon usage of SARS-CoV-2 and its variants.
Comput Struct Biotechnol J. 2025 May 20;27:2034-2050. doi: 10.1016/j.csbj.2025.05.021. eCollection 2025.
3
Persistent Antigens Hypothesis: The Human Leukocyte Antigen (HLA) Connection.
J Neurol Neuromedicine. 2018 Dec 24;3(6):27-1. doi: 10.29245/2572.942x/2018/6.1235.
4
Selective Diversity in RNA Viruses: Do They Know How to Evolve? A Hypothesis.
Bioessays. 2025 Apr;47(4):e202400281. doi: 10.1002/bies.202400281. Epub 2025 Feb 7.
5
Predicting viral proteins that evade the innate immune system: a machine learning-based immunoinformatics tool.
BMC Bioinformatics. 2024 Nov 9;25(1):351. doi: 10.1186/s12859-024-05972-7.
6
Regulatory role of microRNAs in virus-mediated inflammation.
J Inflamm (Lond). 2024 Nov 4;21(1):43. doi: 10.1186/s12950-024-00417-7.
9
Impact of Vaccination and Nonpharmaceutical Interventions With Possible COVID-19 Viral Evolutions Using an Agent-Based Simulation.
AJPM Focus. 2023 Oct 10;3(1):100155. doi: 10.1016/j.focus.2023.100155. eCollection 2024 Feb.
10
Innovation-driven trend shaping COVID-19 vaccine development in China.
Front Med. 2023 Dec;17(6):1096-1116. doi: 10.1007/s11684-023-1034-6. Epub 2023 Dec 16.

本文引用的文献

1
Tapasin: an ER chaperone that controls MHC class I assembly with peptide.
Trends Immunol. 2001 Apr;22(4):194-9. doi: 10.1016/s1471-4906(01)01861-0.
2
The immunological synapse.
Annu Rev Immunol. 2001;19:375-96. doi: 10.1146/annurev.immunol.19.1.375.
3
Regulation of the natural killer cell receptor repertoire.
Annu Rev Immunol. 2001;19:291-330. doi: 10.1146/annurev.immunol.19.1.291.
4
Studies of human antiviral CD8+ lymphocytes using class I peptide tetramers.
Rev Med Virol. 2001 Jan-Feb;11(1):11-22. doi: 10.1002/rmv.295.
7
The human cytomegalovirus gene product US6 inhibits ATP binding by TAP.
EMBO J. 2001 Feb 1;20(3):387-96. doi: 10.1093/emboj/20.3.387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验