Suppr超能文献

用于树突建模的神经解剖学算法。

Neuroanatomical algorithms for dendritic modelling.

作者信息

Ascoli Giorgio A

机构信息

Krasnow Institute for Advanced Study, Psychology Department, George Mason University, Fairfax, VA 22030-4444, USA.

出版信息

Network. 2002 Aug;13(3):247-60.

Abstract

The complexity and variability of dendritic morphology constitutes a fascinating challenge to the investigation of the structure-activity-function relationship in the nervous system. Computational modelling has recently emerged as a powerful approach for the quantitative anatomical characterization of dendrites. The key idea is to design a stochastic algorithm to generate digital structures that are statistically indistinguishable from those of real neurons of a given morphological class. The set of parameters used by this algorithm would then constitute a complete and accurate description of that morphological class. We review the strengths and weaknesses of the major types of algorithms used to model dendrogram properties, including those based on branch diameter and on distance from the soma. We also describe some approaches to the simulation of dendritic orientation and three-dimensional geometry. Finally, we discuss the environmental influences on dendritic morphology (especially the presence of axons, other neurons, and anatomical boundaries) and thus the need to include models of the tissue volume in the algorithmic description of dendrites.

摘要

树突形态的复杂性和变异性对神经系统结构 - 活性 - 功能关系的研究构成了一项引人入胜的挑战。计算建模最近已成为一种用于树突定量解剖特征描述的强大方法。关键思想是设计一种随机算法来生成在统计学上与给定形态学类别的真实神经元无法区分的数字结构。该算法使用的参数集将构成对该形态学类别的完整而准确的描述。我们回顾了用于模拟树状图属性的主要算法类型的优缺点,包括基于分支直径和距胞体距离的算法。我们还描述了一些模拟树突方向和三维几何形状的方法。最后,我们讨论了环境对树突形态的影响(特别是轴突、其他神经元和解剖边界的存在),因此在树突的算法描述中需要纳入组织体积模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验