Suppr超能文献

长程轴突形态的计算生成

Computational Generation of Long-range Axonal Morphologies.

作者信息

Berchet Adrien, Petkantchin Remy, Markram Henry, Kanari Lida

机构信息

Blue Brain Project, EPFL, Chemin des mines 9, 1202, Geneva, Switzerland.

出版信息

Neuroinformatics. 2025 Jan 10;23(1):3. doi: 10.1007/s12021-024-09696-0.

Abstract

Long-range axons are fundamental to brain connectivity and functional organization, enabling communication between different brain regions. Recent advances in experimental techniques have yielded a substantial number of whole-brain axonal reconstructions. While previous computational generative models of neurons have predominantly focused on dendrites, generating realistic axonal morphologies is more challenging due to their distinct targeting. In this study, we present a novel algorithm for axon synthesis that combines algebraic topology with the Steiner tree algorithm, an extension of the minimum spanning tree, to generate both the local and long-range compartments of axons. We demonstrate that our computationally generated axons closely replicate experimental data in terms of their morphological properties. This approach enables the generation of biologically accurate long-range axons that span large distances and connect multiple brain regions, advancing the digital reconstruction of the brain. Ultimately, our approach opens up new possibilities for large-scale in-silico simulations, advancing research into brain function and disorders.

摘要

长程轴突对于大脑的连通性和功能组织至关重要,它能够实现不同脑区之间的通信。实验技术的最新进展已产生了大量全脑轴突重建数据。虽然先前的神经元计算生成模型主要关注树突,但由于轴突独特的靶向性,生成逼真的轴突形态更具挑战性。在本研究中,我们提出了一种用于轴突合成的新算法,该算法将代数拓扑与斯坦纳树算法(最小生成树的扩展)相结合,以生成轴突的局部和长程部分。我们证明,我们通过计算生成的轴突在形态特性方面与实验数据密切相符。这种方法能够生成跨越远距离并连接多个脑区的生物学上准确的长程轴突,推动了大脑的数字重建。最终,我们的方法为大规模计算机模拟开辟了新的可能性,推动了对脑功能和疾病的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2b1/11723904/fd007cbb5e82/12021_2024_9696_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验