Suppr超能文献

Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium.

作者信息

Niggemyer A, Spring S, Stackebrandt E, Rosenzweig R F

机构信息

Program in Environmental Science, University of Idaho, Moscow, Idaho 83844, USA.

出版信息

Appl Environ Microbiol. 2001 Dec;67(12):5568-80. doi: 10.1128/AEM.67.12.5568-5580.2001.

Abstract

Dissimilatory arsenate-reducing bacteria have been implicated in the mobilization of arsenic from arsenic-enriched sediments. An As(V)-reducing bacterium, designated strain GBFH, was isolated from arsenic-contaminated sediments of Lake Coeur d'Alene, Idaho. Strain GBFH couples the oxidation of formate to the reduction of As(V) when formate is supplied as the sole carbon source and electron donor. Additionally, strain GBFH is capable of reducing As(V), Fe(III), Se(VI), Mn(IV) and a variety of oxidized sulfur species. 16S ribosomal DNA sequence comparisons reveal that strain GBFH is closely related to Desulfitobacterium hafniense DCB-2(T) and Desulfitobacterium frappieri PCP-1(T). Comparative physiology demonstrates that D. hafniense and D. frappieri, known for reductively dechlorinating chlorophenols, are also capable of toxic metal or metalloid respiration. DNA-DNA hybridization and comparative physiological studies suggest that D. hafniense, D. frappieri, and strain GBFH should be united into one species. The isolation of an Fe(III)- and As(V)-reducing bacterium from Lake Coeur d'Alene suggests a mechanism for arsenic mobilization in these contaminated sediments while the discovery of metal or metalloid respiration in the genus Desulfitobacterium has implications for environments cocontaminated with arsenious and chlorophenolic compounds.

摘要

相似文献

2
Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d'Alene, Idaho).
Appl Environ Microbiol. 2000 Jan;66(1):154-62. doi: 10.1128/AEM.66.1.154-162.2000.
5
A novel arsenate respiring isolate that can utilize aromatic substrates.
FEMS Microbiol Ecol. 2004 Jun 1;48(3):323-32. doi: 10.1016/j.femsec.2004.02.008.
6
Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1.
Appl Environ Microbiol. 2013 Aug;79(15):4635-42. doi: 10.1128/AEM.00693-13. Epub 2013 May 24.
7
Probing the biogeochemistry of arsenic: response of two contrasting aquifer sediments from Cambodia to stimulation by arsenate and ferric iron.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2007 Oct;42(12):1763-74. doi: 10.1080/10934520701564269.
8
Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis.
Environ Microbiol. 2009 Jun;11(6):1601-11. doi: 10.1111/j.1462-2920.2009.01890.x. Epub 2009 Feb 18.
9
Arsenite oxidation and arsenate respiration by a new Thermus isolate.
FEMS Microbiol Lett. 2001 Nov 13;204(2):335-40. doi: 10.1111/j.1574-6968.2001.tb10907.x.

引用本文的文献

1
sp. nov. NIT-TF6 Isolated from Trichloroethene-Dechlorinating Culture with Formate.
Microorganisms. 2025 Aug 9;13(8):1863. doi: 10.3390/microorganisms13081863.
5
The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health.
Geohealth. 2021 Oct 1;5(10):e2020GH000380. doi: 10.1029/2020GH000380. eCollection 2021 Oct.
8
Biotechnological remediation of arsenate from aqueous solution using a novel bacterial strain: Isotherm, kinetics and thermodynamic studies.
J Environ Health Sci Eng. 2019 Nov 7;17(2):571-579. doi: 10.1007/s40201-019-00371-0. eCollection 2019 Dec.
9
Respiratory Selenite Reductase from Bacillus selenitireducens Strain MLS10.
J Bacteriol. 2019 Mar 13;201(7). doi: 10.1128/JB.00614-18. Print 2019 Apr 1.
10
Isolation and characterization of aerobic, culturable, arsenic-tolerant bacteria from lead-zinc mine tailing in southern China.
World J Microbiol Biotechnol. 2018 Nov 16;34(12):177. doi: 10.1007/s11274-018-2557-x.

本文引用的文献

1
Studies on the spectrophotometric determination of DNA hybridization from renaturation rates.
Syst Appl Microbiol. 1983;4(2):184-92. doi: 10.1016/S0723-2020(83)80048-4.
2
Fixation, transformation, and mobilization of arsenic in sediments.
Environ Sci Technol. 1987 May 1;21(5):450-9. doi: 10.1021/es00159a005.
3
Precipitation of Arsenic Trisulfide by Desulfotomaculum auripigmentum.
Appl Environ Microbiol. 1997 May;63(5):2022-8. doi: 10.1128/aem.63.5.2022-2028.1997.
4
Bacterial Dissimilatory Reduction of Arsenic(V) to Arsenic(III) in Anoxic Sediments.
Appl Environ Microbiol. 1996 May;62(5):1664-9. doi: 10.1128/aem.62.5.1664-1669.1996.
5
Growth of Strain SES-3 with Arsenate and Other Diverse Electron Acceptors.
Appl Environ Microbiol. 1995 Oct;61(10):3556-61. doi: 10.1128/aem.61.10.3556-3561.1995.
6
Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.
Appl Environ Microbiol. 1988 Jun;54(6):1472-80. doi: 10.1128/aem.54.6.1472-1480.1988.
7
Organic matter mineralization with reduction of ferric iron in anaerobic sediments.
Appl Environ Microbiol. 1986 Apr;51(4):683-9. doi: 10.1128/aem.51.4.683-689.1986.
8
The use of lead citrate at high pH as an electron-opaque stain in electron microscopy.
J Cell Biol. 1963 Apr;17(1):208-12. doi: 10.1083/jcb.17.1.208.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验