核苷酸切除修复介导的非增殖细胞中 UV 诱导突变的机制。

The mechanism of nucleotide excision repair-mediated UV-induced mutagenesis in nonproliferating cells.

机构信息

Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Genetics. 2013 Mar;193(3):803-17. doi: 10.1534/genetics.112.147421. Epub 2013 Jan 10.

Abstract

Following the irradiation of nondividing yeast cells with ultraviolet (UV) light, most induced mutations are inherited by both daughter cells, indicating that complementary changes are introduced into both strands of duplex DNA prior to replication. Early analyses demonstrated that such two-strand mutations depend on functional nucleotide excision repair (NER), but the molecular mechanism of this unique type of mutagenesis has not been further explored. In the experiments reported here, an ade2 adeX colony-color system was used to examine the genetic control of UV-induced mutagenesis in nondividing cultures of Saccharomyces cerevisiae. We confirmed a strong suppression of two-strand mutagenesis in NER-deficient backgrounds and demonstrated that neither mismatch repair nor interstrand crosslink repair affects the production of these mutations. By contrast, proteins involved in the error-prone bypass of DNA damage (Rev3, Rev1, PCNA, Rad18, Pol32, and Rad5) and in the early steps of the DNA-damage checkpoint response (Rad17, Mec3, Ddc1, Mec1, and Rad9) were required for the production of two-strand mutations. There was no involvement, however, for the Pol η translesion synthesis DNA polymerase, the Mms2-Ubc13 postreplication repair complex, downstream DNA-damage checkpoint factors (Rad53, Chk1, and Dun1), or the Exo1 exonuclease. Our data support models in which UV-induced mutagenesis in nondividing cells occurs during the Pol ζ-dependent filling of lesion-containing, NER-generated gaps. The requirement for specific DNA-damage checkpoint proteins suggests roles in recruiting and/or activating factors required to fill such gaps.

摘要

用紫外线(UV)照射不分裂的酵母细胞后,大多数诱导的突变都被两个子细胞继承,这表明在复制之前,双链 DNA 的两条链都引入了互补的变化。早期的分析表明,这种双链突变依赖于功能性核苷酸切除修复(NER),但这种独特类型的诱变的分子机制尚未进一步探索。在本报告的实验中,使用 ade2 adeX 菌落颜色系统检查了非分裂酿酒酵母培养物中 UV 诱导的突变的遗传控制。我们证实了在 NER 缺陷背景下强烈抑制双链诱变,并证明错配修复或链间交联修复都不会影响这些突变的产生。相比之下,涉及 DNA 损伤易错旁路的蛋白质(Rev3、Rev1、PCNA、Rad18、Pol32 和 Rad5)和 DNA 损伤检查点反应的早期步骤(Rad17、Mec3、Ddc1、Mec1 和 Rad9)参与了双链突变的产生。然而,没有涉及 Pol η 移码合成 DNA 聚合酶、Mms2-Ubc13 复制后修复复合物、下游 DNA 损伤检查点因子(Rad53、Chk1 和 Dun1)或 Exo1 核酸外切酶。我们的数据支持这样的模型,即在非分裂细胞中,紫外线诱导的突变发生在 Pol ζ 依赖性填充包含损伤的 NER 产生的缺口期间。对特定 DNA 损伤检查点蛋白的需求表明在招募和/或激活填充这些缺口所需的因子方面的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索