Suppr超能文献

酿酒酵母中端粒丢失后染色体末端的修复。

Repair of chromosome ends after telomere loss in Saccharomyces.

作者信息

Mangahas J L, Alexander M K, Sandell L L, Zakian V A

机构信息

Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.

出版信息

Mol Biol Cell. 2001 Dec;12(12):4078-89. doi: 10.1091/mbc.12.12.4078.

Abstract

Removal of a telomere from yeast chromosome VII in a strain having two copies of this chromosome often results in its loss. Here we show that there are three pathways that can stabilize this broken chromosome: homologous recombination, nonhomologous end joining, and de novo telomere addition. Both in a wild-type and a recombination deficient rad52 strain, most stabilization events were due to homologous recombination, whereas nonhomologous end joining was exceptionally rare. De novo telomere addition was relatively rare, stabilizing <0.1% of broken chromosomes. Telomere addition took place at a very limited number of sites on chromosome VII, most occurring close to a 35-base pair stretch of telomere-like DNA that is normally approximately 50 kb from the left telomere of chromosome VII. In the absence of the Pif1p DNA helicase, telomere addition events were much more frequent and were not concentrated near the 35-base pair tract of telomere-like DNA. We propose that internal tracts of telomere-like sequence recruit telomerase by binding its anchor site and that Pif1p inhibits telomerase by dissociating DNA primer-telomerase RNA interactions. These data also show that telomeric DNA is essential for the stable maintenance of linear chromosomes in yeast.

摘要

在具有两条该染色体拷贝的酵母菌株中,从酵母染色体VII上移除一个端粒通常会导致其丢失。在这里我们表明,有三种途径可以稳定这条断裂的染色体:同源重组、非同源末端连接和端粒从头添加。在野生型和重组缺陷型rad52菌株中,大多数稳定事件都是由于同源重组,而非同源末端连接则极为罕见。端粒从头添加相对较少,稳定了不到0.1%的断裂染色体。端粒添加发生在染色体VII上非常有限的位点,大多数发生在靠近一段35个碱基对的类似端粒DNA的区域,该区域通常距离染色体VII左端粒约50 kb。在缺乏Pif1p DNA解旋酶的情况下,端粒添加事件更为频繁,且不集中在35个碱基对的类似端粒DNA区域附近。我们提出,类似端粒序列的内部区域通过结合端粒酶的锚定位点来招募端粒酶,并且Pif1p通过解离DNA引物-端粒酶RNA相互作用来抑制端粒酶。这些数据还表明,端粒DNA对于酵母中线性染色体的稳定维持至关重要。

相似文献

1
Repair of chromosome ends after telomere loss in Saccharomyces.
Mol Biol Cell. 2001 Dec;12(12):4078-89. doi: 10.1091/mbc.12.12.4078.
2
Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends.
Genes Dev. 2003 Oct 1;17(19):2384-95. doi: 10.1101/gad.1125903. Epub 2003 Sep 15.
3
Pif1p helicase, a catalytic inhibitor of telomerase in yeast.
Science. 2000 Aug 4;289(5480):771-4. doi: 10.1126/science.289.5480.771.
4
Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae.
Mol Microbiol. 2006 Mar;59(5):1357-68. doi: 10.1111/j.1365-2958.2006.05026.x.
5
The yeast Pif1p helicase removes telomerase from telomeric DNA.
Nature. 2005 Nov 3;438(7064):57-61. doi: 10.1038/nature04091. Epub 2005 Aug 24.
8
Emerging non-canonical roles for the Rad51-Rad52 interaction in response to double-strand breaks in yeast.
Curr Genet. 2020 Oct;66(5):917-926. doi: 10.1007/s00294-020-01081-z. Epub 2020 May 12.
9
Protection of telomeres by the Ku protein in fission yeast.
Mol Biol Cell. 2000 Oct;11(10):3265-75. doi: 10.1091/mbc.11.10.3265.
10
Telomere dysfunction increases mutation rate and genomic instability.
Cell. 2001 Aug 10;106(3):275-86. doi: 10.1016/s0092-8674(01)00457-3.

引用本文的文献

1
Neotelomeres and telomere-spanning chromosomal arm fusions in cancer genomes revealed by long-read sequencing.
Cell Genom. 2024 Jul 10;4(7):100588. doi: 10.1016/j.xgen.2024.100588. Epub 2024 Jun 24.
2
Deficiency in homologous recombination is associated with changes in cell cycling and morphology in Saccharomyces cerevisiae.
Exp Cell Res. 2023 Sep 1;430(1):113701. doi: 10.1016/j.yexcr.2023.113701. Epub 2023 Jun 30.
3
Flexible Attachment and Detachment of Centromeres and Telomeres to and from Chromosomes.
Biomolecules. 2023 Jun 20;13(6):1016. doi: 10.3390/biom13061016.
4
A comprehensive map of hotspots of de novo telomere addition in Saccharomyces cerevisiae.
Genetics. 2023 May 26;224(2). doi: 10.1093/genetics/iyad076.
5
A comprehensive map of hotspots of de novo telomere addition in .
bioRxiv. 2023 Mar 23:2023.03.20.533556. doi: 10.1101/2023.03.20.533556.
7
Role and Regulation of Pif1 Family Helicases at the Replication Fork.
Int J Mol Sci. 2022 Mar 29;23(7):3736. doi: 10.3390/ijms23073736.
8
Srs2 and Pif1 as Model Systems for Understanding Sf1a and Sf1b Helicase Structure and Function.
Genes (Basel). 2021 Aug 26;12(9):1319. doi: 10.3390/genes12091319.
9
When the Ends Justify the Means: Regulation of Telomere Addition at Double-Strand Breaks in Yeast.
Front Cell Dev Biol. 2021 Mar 18;9:655377. doi: 10.3389/fcell.2021.655377. eCollection 2021.
10
Emerging non-canonical roles for the Rad51-Rad52 interaction in response to double-strand breaks in yeast.
Curr Genet. 2020 Oct;66(5):917-926. doi: 10.1007/s00294-020-01081-z. Epub 2020 May 12.

本文引用的文献

1
Pif1p helicase, a catalytic inhibitor of telomerase in yeast.
Science. 2000 Aug 4;289(5480):771-4. doi: 10.1126/science.289.5480.771.
3
The Est1 subunit of yeast telomerase binds the Tlc1 telomerase RNA.
Mol Cell Biol. 2000 Mar;20(6):1947-55. doi: 10.1128/MCB.20.6.1947-1955.2000.
5
Est1 and Cdc13 as comediators of telomerase access.
Science. 1999 Oct 1;286(5437):117-20. doi: 10.1126/science.286.5437.117.
6
Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast.
Cell. 1999 May 28;97(5):621-33. doi: 10.1016/s0092-8674(00)80773-4.
8
Telomere loss in somatic cells of Drosophila causes cell cycle arrest and apoptosis.
Genetics. 1999 Mar;151(3):1041-51. doi: 10.1093/genetics/151.3.1041.
9
The heterochromatin protein 1 prevents telomere fusions in Drosophila.
Mol Cell. 1998 Nov;2(5):527-38. doi: 10.1016/s1097-2765(00)80152-5.
10
Homology-directed repair is a major double-strand break repair pathway in mammalian cells.
Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5172-7. doi: 10.1073/pnas.95.9.5172.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验