Ngo Katrina, Gittens Tristen H, Gonzalez David I, Hatmaker E Anne, Plotkin Simcha, Engle Mason, Friedman Geofrey A, Goldin Melissa, Hoerr Remington E, Eichman Brandt F, Rokas Antonis, Benton Mary Lauren, Friedman Katherine L
Department of Biological Sciences, Vanderbilt University.
Evolutionary Studies Initiative, Vanderbilt University.
bioRxiv. 2023 Mar 23:2023.03.20.533556. doi: 10.1101/2023.03.20.533556.
Telomere healing occurs when telomerase, normally restricted to chromosome ends, acts upon a double-strand break to create a new, functional telomere. De novo telomere addition on the centromere-proximal side of a break truncates the chromosome but, by blocking resection, may allow the cell to survive an otherwise lethal event. We previously identified several sequences in the baker’s yeast, , that act as hotspots of de novo telomere addition (termed Sites of Repair-associated Telomere Addition or SiRTAs), but the distribution and functional relevance of SiRTAs is unclear. Here, we describe a high-throughput sequencing method to measure the frequency and location of telomere addition within sequences of interest. Combining this methodology with a computational algorithm that identifies SiRTA sequence motifs, we generate the first comprehensive map of telomere-addition hotspots in yeast. Putative SiRTAs are strongly enriched in subtelomeric regions where they may facilitate formation of a new telomere following catastrophic telomere loss. In contrast, outside of subtelomeres, the distribution and orientation of SiRTAs appears random. Since truncating the chromosome at most SiRTAs would be lethal, this observation argues against selection for these sequences as sites of telomere addition per se. We find, however, that sequences predicted to function as SiRTAs are significantly more prevalent across the genome than expected by chance. Sequences identified by the algorithm bind the telomeric protein Cdc13, raising the possibility that association of Cdc13 with single-stranded regions generated during the response to DNA damage may facilitate DNA repair more generally.
端粒修复发生在端粒酶(通常局限于染色体末端)作用于双链断裂以产生新的功能性端粒时。在断裂点着丝粒近端一侧从头添加端粒会使染色体截短,但通过阻止切除,可能使细胞在原本致命的事件中存活下来。我们之前在酿酒酵母中鉴定出了几个序列,这些序列作为从头添加端粒的热点(称为修复相关端粒添加位点或SiRTAs),但SiRTAs的分布及其功能相关性尚不清楚。在这里,我们描述了一种高通量测序方法,用于测量感兴趣序列内端粒添加的频率和位置。将这种方法与识别SiRTA序列基序的计算算法相结合,我们生成了酵母中首个全面的端粒添加热点图谱。推定的SiRTAs在亚端粒区域强烈富集,在灾难性端粒丢失后,它们可能促进新端粒的形成。相比之下,在亚端粒之外,SiRTAs的分布和方向似乎是随机的。由于在大多数SiRTAs处截短染色体会是致命的,这一观察结果反对将这些序列选择为端粒添加位点本身。然而,我们发现预测具有SiRTA功能的序列在全基因组中比随机预期的更为普遍。该算法识别出的序列与端粒蛋白Cdc13结合,这增加了Cdc13与DNA损伤应答过程中产生的单链区域的结合可能更普遍地促进DNA修复的可能性。