Suppr超能文献

High temperature stabilization of DNA in complexes with cationic lipids.

作者信息

Tarahovsky Yury S, Rakhmanova Vera A, Epand Richard M, MacDonald Robert C

机构信息

Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

Biophys J. 2002 Jan;82(1 Pt 1):264-73. doi: 10.1016/S0006-3495(02)75392-7.

Abstract

The influence on the melting of calf thymus and plasmid DNA of cationic lipids of the type used in gene therapy was studied by ultraviolet spectrophotometry and differential scanning calorimetry. It was found that various membrane-forming cationic lipids are able to protect calf thymus DNA against denaturation at 100 degrees C. After interaction with cationic lipids, the differential scanning calorimetry melting profile of both calf thymus and plasmid DNA revealed two major components, one corresponding to a thermolabile complex with transition temperature, T(m(labile)), close to that of free DNA and a second corresponding to a thermostable complex with a transition temperature, T(m(stable)), at 105 to 115 degrees C. The parameter T(m(stable)) did not depend on the charge ratio, R(+/-). Instead, the amount of thermostable DNA and the enthalpy ratio Delta H((stable))/Delta H((labile)) depended upon R(+/-) and conditions of complex formation. In the case of O-ethyldioleoylphosphatidylcholine, the cationic lipid that was the main subject of the investigation, the maximal stabilization of DNA exceeded 90% between R(+/-) = 1.5 and 3.0. Several other lipids gave at least 75% protection in the range R(+/-) = 1.5 to 2.0. Centrifugal separation of the thermostable and thermolabile fractions revealed that almost all the transfection activity was present at the thermostable fraction. Electron microscopy of the thermostable complex demonstrated the presence of multilamellar membranes with a periodicity 6.0 to 6.5 nm. This periodic multilamellar structure was retained at temperatures as high as 130 degrees C. It is concluded that constraint of the DNA molecules between oppositely charged membrane surfaces in the multilamellar complex is responsible for DNA stabilization.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验