Vazquez-Torres A, Fang F C
Department of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Ave, B168, Denver, CO 80262, USA.
Microbes Infect. 2001 Nov-Dec;3(14-15):1313-20. doi: 10.1016/s1286-4579(01)01492-7.
The bacteria-phagocyte interaction is of central importance in Salmonella pathogenesis. Immediately following phagocytosis, the NADPH phagocyte oxidase complex assembles in vesicles and produces highly toxic reactive oxygen species that play a major role in initial Salmonella killing by phagocytes. However, Salmonella has evolved a number of strategies to reduce the efficacy of oxygen-dependent phagocyte antimicrobial systems. Some of these strategies, such as superoxide dismutases, hydroperoxidases, oxidoreductases, scavengers and repair systems are common to most aerobic bacteria. In addition, Salmonella has acquired, by horizontal gene transfer, a type III secretory system encoded by Salmonella pathogenicity island 2 that interferes with the trafficking of vesicles containing functional NADPH phagocyte oxidase to the phagosome, thereby enhancing the survival of Salmonella within macrophages.
细菌与吞噬细胞的相互作用在沙门氏菌致病过程中至关重要。吞噬作用发生后,NADPH吞噬细胞氧化酶复合物立即在囊泡中组装,并产生剧毒的活性氧物质,这些物质在吞噬细胞最初杀灭沙门氏菌的过程中起主要作用。然而,沙门氏菌已经进化出多种策略来降低依赖氧气的吞噬细胞抗菌系统的功效。其中一些策略,如超氧化物歧化酶、氢过氧化物酶、氧化还原酶、清除剂和修复系统,是大多数需氧细菌共有的。此外,沙门氏菌通过水平基因转移获得了一个由沙门氏菌致病岛2编码的III型分泌系统,该系统干扰含有功能性NADPH吞噬细胞氧化酶的囊泡向吞噬体的运输,从而提高沙门氏菌在巨噬细胞内的存活率。