Hameroff Stuart, Nip Alex, Porter Mitchell, Tuszynski Jack
Department of Anesthesiology and Psychology, Center for Consciousness Studies, University of Arizona, Tucson, AZ 85721, USA.
Biosystems. 2002 Jan;64(1-3):149-68. doi: 10.1016/s0303-2647(01)00183-6.
Technological computation is entering the quantum realm, focusing attention on biomolecular information processing systems such as proteins, as presaged by the work of Michael Conrad. Protein conformational dynamics and pharmacological evidence suggest that protein conformational states-fundamental information units ('bits') in biological systems-are governed by quantum events, and are thus perhaps akin to quantum bits ('qubits') as utilized in quantum computation. 'Real time' dynamic activities within cells are regulated by the cell cytoskeleton, particularly microtubules (MTs) which are cylindrical lattice polymers of the protein tubulin. Recent evidence shows signaling, communication and conductivity in MTs, and theoretical models have predicted both classical and quantum information processing in MTs. In this paper we show conduction pathways for electron mobility and possible quantum tunneling and superconductivity among aromatic amino acids in tubulins. The pathways within tubulin match helical patterns in the microtubule lattice structure, which lend themselves to topological quantum effects resistant to decoherence. The Penrose-Hameroff 'Orch OR' model of consciousness is reviewed as an example of the possible utility of quantum computation in MTs.
技术计算正在进入量子领域,正如迈克尔·康拉德的工作所预示的那样,它将注意力集中在诸如蛋白质等生物分子信息处理系统上。蛋白质构象动力学和药理学证据表明,蛋白质构象状态——生物系统中的基本信息单元(“比特”)——受量子事件支配,因此可能类似于量子计算中使用的量子比特(“量子位”)。细胞内的“实时”动态活动由细胞骨架调节,特别是微管(MTs),它是蛋白质微管蛋白的圆柱形晶格聚合物。最近的证据显示了微管中的信号传导、通信和导电性,理论模型也预测了微管中的经典和量子信息处理。在本文中,我们展示了微管蛋白中芳香族氨基酸之间电子迁移的传导途径以及可能的量子隧穿和超导性。微管蛋白内的途径与微管晶格结构中的螺旋模式相匹配,这有助于产生抗退相干的拓扑量子效应。作为量子计算在微管中可能用途的一个例子,我们回顾了彭罗斯 - 哈梅罗夫的“协同客观还原”意识模型。