Suppr超能文献

此处空间充足:作为经过进化、负荷过重的多尺度机器的生物系统。

There's Plenty of Room Right Here: Biological Systems as Evolved, Overloaded, Multi-Scale Machines.

作者信息

Bongard Joshua, Levin Michael

机构信息

Department of Computer Science, University of Vermont, Burlington, VT 05405, USA.

Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA 02155, USA.

出版信息

Biomimetics (Basel). 2023 Mar 8;8(1):110. doi: 10.3390/biomimetics8010110.

Abstract

The applicability of computational models to the biological world is an active topic of debate. We argue that a useful path forward results from abandoning hard boundaries between categories and adopting an observer-dependent, pragmatic view. Such a view dissolves the contingent dichotomies driven by human cognitive biases (e.g., a tendency to oversimplify) and prior technological limitations in favor of a more continuous view, necessitated by the study of evolution, developmental biology, and intelligent machines. Form and function are tightly entwined in nature, and in some cases, in robotics as well. Thus, efforts to re-shape living systems for biomedical or bioengineering purposes require prediction and control of their function at multiple scales. This is challenging for many reasons, one of which is that living systems perform multiple functions in the same place at the same time. We refer to this as "polycomputing"-the ability of the same substrate to simultaneously compute different things, and make those computational results available to different observers. This ability is an important way in which living things are a kind of computer, but not the familiar, linear, deterministic kind; rather, living things are computers in the broad sense of their computational materials, as reported in the rapidly growing physical computing literature. We argue that an observer-centered framework for the computations performed by evolved and designed systems will improve the understanding of mesoscale events, as it has already done at quantum and relativistic scales. To develop our understanding of how life performs polycomputing, and how it can be convinced to alter one or more of those functions, we can first create technologies that polycompute and learn how to alter their functions. Here, we review examples of biological and technological polycomputing, and develop the idea that the overloading of different functions on the same hardware is an important design principle that helps to understand and build both evolved and designed systems. Learning to hack existing polycomputing substrates, as well as to evolve and design new ones, will have massive impacts on regenerative medicine, robotics, and computer engineering.

摘要

计算模型在生物世界中的适用性是一个活跃的辩论话题。我们认为,一条有用的前进道路是摒弃类别之间的硬性界限,采用一种依赖观察者的实用观点。这种观点消除了由人类认知偏差(例如过度简化的倾向)和先前技术限制所驱动的偶然二分法,转而支持一种更具连续性的观点,这是进化、发育生物学和智能机器研究的必然要求。形式和功能在自然界中紧密相连,在某些情况下,在机器人技术中也是如此。因此,为了生物医学或生物工程目的而重塑生命系统的努力需要在多个尺度上预测和控制其功能。这具有挑战性,原因有很多,其中之一是生命系统在同一时间、同一地点执行多种功能。我们将此称为“多计算”——同一基质同时计算不同事物并将这些计算结果提供给不同观察者的能力。这种能力是生物成为一种计算机的重要方式,但不是那种熟悉的、线性的、确定性的计算机;相反,正如快速发展的物理计算文献中所报道的那样,生物是从其计算材料的广义角度而言的计算机。我们认为,一个以观察者为中心的框架对于进化和设计系统所执行的计算,将有助于增进对中尺度事件的理解,就像它在量子和相对论尺度上已经做到的那样。为了深入了解生命如何进行多计算,以及如何促使它改变其中一种或多种功能,我们可以首先创建能够进行多计算的技术,并学习如何改变它们的功能。在这里,我们回顾生物和技术多计算的例子,并提出这样一种观点,即在同一硬件上叠加不同功能是一个重要的设计原则,有助于理解和构建进化系统与设计系统。学习破解现有的多计算基质,以及进化和设计新的基质,将对再生医学、机器人技术和计算机工程产生巨大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ebc/10046700/639898395ef8/biomimetics-08-00110-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验