Suppr超能文献

计算机辅助睡眠分期

Computer-assisted sleep staging.

作者信息

Agarwal R, Gotman J

机构信息

Stellate Systems, 345 Victoria Ave., Suite 300, Montreal, QC H3Z 2N2, Canada. ragarwalstellate.com

出版信息

IEEE Trans Biomed Eng. 2001 Dec;48(12):1412-23. doi: 10.1109/10.966600.

Abstract

To address the subjectivity in manual scoring of polysomnograms, a computer-assisted sleep staging method is presented in this paper. The method uses the principles of segmentation and self-organization (clustering) based on primitive sleep-related features to find the pseudonatural stages present in the record. Sample epochs of these natural stages are presented to the user, who can classify them according to the Rechtschaffen and Kales (RK) or any other standard. The method then learns from these samples to complete the classification. This step allows the active participation of the operator in order to customize the staging to his/her preferences. The method was developed and tested using 12 records of varying types (normal, abnormal, male, female, varying age groups). Results showed an overall concurrence of 80.6% with manual scoring of 20-s epochs according to RK standard. The greatest amount of errors occurred in the identification of the highly transitional Stage 1, 54% of which was misclassified into neighboring stages 2 or Wake.

摘要

为了解决多导睡眠图人工评分中的主观性问题,本文提出了一种计算机辅助睡眠分期方法。该方法基于与睡眠相关的原始特征,利用分割和自组织(聚类)原理来找出记录中存在的伪自然阶段。这些自然阶段的样本片段会呈现给用户,用户可以根据 Rechtschaffen 和 Kales(RK)标准或任何其他标准对其进行分类。然后,该方法从这些样本中学习以完成分类。这一步骤允许操作员积极参与,以便根据其偏好定制分期。该方法是使用 12 份不同类型(正常、异常、男性、女性、不同年龄组)的记录进行开发和测试的。结果显示,根据 RK 标准,与 20 秒片段的人工评分总体一致性为 80.6%。最大数量的错误发生在高度过渡的第 1 阶段的识别中,其中 54%被错误分类到相邻的第 2 阶段或清醒状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验