Suppr超能文献

对杂乱数据进行多层次分析。

Multilevel analysis with messy data.

作者信息

Longford N T

机构信息

De Montfort University, James Went Building 2-8, The Gateway, Leicester LE2 5YL, UK.

出版信息

Stat Methods Med Res. 2001 Dec;10(6):429-44. doi: 10.1177/096228020101000605.

Abstract

This paper reviews applications of the method of multiple imputation to dealing with multilevel data that have several kinds of imperfections. These are classified into two broad categories: missing values and imprecise measurement (corrupted recording). The role of the model describing the data imperfections is emphasized. With multiple imputation, these imperfections and information about the processes underlying them can be taken into account. The inferences drawn exploit all the collected information and appropriately reflect the information contained in the data.

摘要

本文回顾了多重填补方法在处理存在多种缺陷的多级数据中的应用。这些缺陷大致可分为两大类:缺失值和不精确测量(记录错误)。文中强调了描述数据缺陷的模型的作用。通过多重填补,可以考虑这些缺陷及其背后过程的相关信息。由此得出的推断利用了所有收集到的信息,并恰当地反映了数据中包含的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验