Suppr超能文献

用于预测蛋白质亚细胞定位的人工神经网络模型。

Artificial neural network model for predicting protein subcellular location.

作者信息

Cai Yu-Dong, Liu Xiao-Jun, Chou Kuo-Chen

机构信息

Shanghai Research Centre of Biotechnology, Chinese Academy of Sciences.

出版信息

Comput Chem. 2002 Jan;26(2):179-82. doi: 10.1016/s0097-8485(01)00106-1.

Abstract

The function of a protein is closely correlated to its subcellular location. Is it possible to utilize a bioinformatics method to predict the protein subcellular location? To explore this problem, proteins are classified into 12 groups (Protein Eng. 12 (1999) 107-118) according to their subcellular location: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracellular, (6) Golgi apparatus, (7) lysosome, (8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12) vacuole. In this paper, the neural network method was proposed to predict the subcellular location of a protein according to its amino acid composition. Results obtained through self-consistency, cross-validation and independent dataset tests are quite high. Accordingly, the present method can serve as a complement tool for the existing prediction methods in this area.

摘要

蛋白质的功能与其亚细胞定位密切相关。是否有可能利用生物信息学方法预测蛋白质的亚细胞定位?为了探究这个问题,根据蛋白质的亚细胞定位将其分为12组(《蛋白质工程》1999年第12卷,第107 - 118页):(1)叶绿体,(2)细胞质,(3)细胞骨架,(4)内质网,(5)细胞外,(6)高尔基体,(7)溶酶体,(8)线粒体,(9)细胞核,(10)过氧化物酶体,(11)质膜和(12)液泡。本文提出了神经网络方法,根据蛋白质的氨基酸组成预测其亚细胞定位。通过自一致性、交叉验证和独立数据集测试获得的结果相当高。因此,本方法可作为该领域现有预测方法的补充工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验