Woodside Adrienne M, Guengerich F Peter
Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
Biochemistry. 2002 Jan 22;41(3):1027-38. doi: 10.1021/bi011495n.
Misincorporation at a DNA-carcinogen adduct may contribute to formation of mutations if a polymerase proceeds past the lesion, compromising fidelity, as in the G:C to A:T mutations caused by O(6)-alkylguanine. Replication of primer/templates containing guanine (G), O(6)-methylguanine (O(6)-MeG), or O(6)-benzylguanine (O(6)-BzG) was assessed using T7 DNA polymerase exo(-) (T7(-)) and HIV-1 reverse transcriptase (RT). The steady-state parameters indicated that T7(-) and RT preferentially incorporated dTTP opposite O(6)-MeG and O(6)-BzG. The incorporation efficiencies (k(cat)/K(m)) were less for O(6)-BzG than O(6)-MeG for both dCTP and dTTP insertion. Pre-steady-state analysis indicated that the product formed during the burst phase, i.e., the burst amplitude, differed significantly between the unmodified 24-mer/36-G-mer and the O(6)-alkylG-containing substrates. Extension of the O(6)-BzG-containing duplexes was much more difficult for both polymerases as compared to O(6)-MeG, except when RT easily extended the O(6)-BzG:T base pair. The for binding of dCTP or dTTP to a RTDNA complex containing O(6)-MeG was 8-fold greater than for dNTP binding to a complex containing unmodified DNA. The for a RTDNA complex containing O(6)-BzG was 50-fold greater. In conclusion, the bulkier O(6)-BzG is a greater block to polymerization by T7(-) and RT than is O(6)-MeG, but some polymerization does occur with an O(6)-BzG substrate. Pre-steady-state analysis indicates that neither dCTP nor dTTP insertion is strongly preferred during polymerization of O(6)-BzG-containing DNA, unlike the case of O(6)-MeG. These results and others regarding polymerase stalling opposite O(6)-MeG and O(6)-BzG are discussed in the following paper in this issue [Woodside, A. M., and Guengerich, F. P. (2002) Biochemistry 41, 1039-1050].
如果聚合酶越过损伤部位继续延伸,DNA致癌物加合物处的错误掺入可能会导致突变的形成,这会损害保真度,就像O(6)-烷基鸟嘌呤引起的G:C到A:T突变那样。使用T7 DNA聚合酶外切酶(-)(T7(-))和HIV-1逆转录酶(RT)评估了含有鸟嘌呤(G)、O(6)-甲基鸟嘌呤(O(6)-MeG)或O(6)-苄基鸟嘌呤(O(6)-BzG)的引物/模板的复制情况。稳态参数表明,T7(-)和RT优先在O(6)-MeG和O(6)-BzG相对位置掺入dTTP。对于dCTP和dTTP的插入,O(6)-BzG的掺入效率(k(cat)/K(m))低于O(6)-MeG。预稳态分析表明,在爆发阶段形成的产物,即爆发幅度,在未修饰的24聚体/36-G聚体与含O(6)-烷基G的底物之间存在显著差异。与O(6)-MeG相比,两种聚合酶延伸含O(6)-BzG的双链体都困难得多,除非RT能轻易延伸O(6)-BzG:T碱基对。dCTP或dTTP与含O(6)-MeG的RTDNA复合物结合的解离常数比与含未修饰DNA的复合物结合的解离常数大8倍。含O(6)-BzG的RTDNA复合物的解离常数大50倍。总之,体积更大的O(6)-BzG比O(6)-MeG对T7(-)和RT的聚合作用形成更大的阻碍,但O(6)-BzG底物确实会发生一些聚合反应。预稳态分析表明,与O(6)-MeG的情况不同,在含O(6)-BzG的DNA聚合过程中,dCTP和dTTP的插入都不是强烈优先的。这些结果以及其他关于聚合酶在O(6)-MeG和O(6)-BzG相对位置停滞的结果将在本期的下一篇论文中讨论[伍德赛德,A.M.,和根杰里奇,F.P.(2002年)《生物化学》41,1039 - 1050]。