Suppr超能文献

铜绿假单胞菌噬菌体PaP1的DNA聚合酶对O-甲基鸟嘌呤的易错旁路

Error-prone bypass of O-methylguanine by DNA polymerase of Pseudomonas aeruginosa phage PaP1.

作者信息

Gu Shiling, Xiong Jingyuan, Shi Ying, You Jia, Zou Zhenyu, Liu Xiaoying, Zhang Huidong

机构信息

Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.

Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.

出版信息

DNA Repair (Amst). 2017 Sep;57:35-44. doi: 10.1016/j.dnarep.2017.06.021. Epub 2017 Jun 10.

Abstract

O-Methylguanine (O-MeG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, generally leads to G:C to A:T mutagenesis. To study DNA replication encountering O-MeG by the DNA polymerase (gp90) of P. aeruginosa phage PaP1, we analyzed steady-state and pre-steady-state kinetics of nucleotide incorporation opposite O-MeG by gp90 exo. O-MeG partially inhibited full-length extension by gp90 exo. O-MeG greatly reduces dNTP incorporation efficiency, resulting in 67-fold preferential error-prone incorporation of dTTP than dCTP. Gp90 exo extends beyond T:O-MeG 2-fold more efficiently than C:O-MeG. Incorporation of dCTP opposite G and incorporation of dCTP or dTTP opposite O-MeG show fast burst phases. The pre-steady-state incorporation efficiency (k/K) is decreased in the order of dCTP:G>dTTP:O-MeG>dCTP:O-MeG. The presence of O-MeG at template does not affect the binding affinity of polymerase to DNA but it weakened their binding in the presence of dCTP and Mg. Misincorporation of dTTP opposite O-MeG further weakens the binding affinity of polymerase to DNA. The priority of dTTP incorporation opposite O-MeG is originated from the fact that dTTP can induce a faster conformational change step and a faster chemical step than dCTP. This study reveals that gp90 bypasses O-MeG in an error-prone manner and provides further understanding in DNA replication encountering mutagenic alkylation DNA damage for P. aeruginosa phage PaP1.

摘要

O-甲基鸟嘌呤(O-MeG)具有高度致突变性,常见于暴露于甲基化剂的DNA中,通常会导致G:C到A:T的诱变。为了研究铜绿假单胞菌噬菌体PaP1的DNA聚合酶(gp90)在遇到O-MeG时的DNA复制情况,我们分析了gp90外切酶在O-MeG对面掺入核苷酸的稳态和预稳态动力学。O-MeG部分抑制了gp90外切酶的全长延伸。O-MeG大大降低了dNTP的掺入效率,导致dTTP比dCTP出现67倍的易错掺入偏好。与C:O-MeG相比,gp90外切酶延伸越过T:O-MeG的效率高2倍。在G对面掺入dCTP以及在O-MeG对面掺入dCTP或dTTP均显示出快速爆发阶段。预稳态掺入效率(k/K)按dCTP:G>dTTP:O-MeG>dCTP:O-MeG的顺序降低。模板上O-MeG的存在不影响聚合酶与DNA的结合亲和力,但在dCTP和Mg存在的情况下会削弱它们的结合。在O-MeG对面错误掺入dTTP会进一步削弱聚合酶与DNA的结合亲和力。在O-MeG对面优先掺入dTTP源于这样一个事实,即dTTP比dCTP能诱导更快的构象变化步骤和更快的化学步骤。这项研究表明,gp90以易错的方式绕过O-MeG,并为铜绿假单胞菌噬菌体PaP1在遇到诱变烷基化DNA损伤时的DNA复制提供了进一步的理解。

相似文献

1
Error-prone bypass of O-methylguanine by DNA polymerase of Pseudomonas aeruginosa phage PaP1.
DNA Repair (Amst). 2017 Sep;57:35-44. doi: 10.1016/j.dnarep.2017.06.021. Epub 2017 Jun 10.
3
Epigenetic DNA Modification N-Methyladenine Inhibits DNA Replication by DNA Polymerase of Pseudomonas aeruginosa Phage PaP1.
Chem Res Toxicol. 2019 May 20;32(5):840-849. doi: 10.1021/acs.chemrestox.8b00348. Epub 2019 Apr 12.
4
Bypass of an Abasic Site via the A-Rule by DNA Polymerase of Pseudomonas aeruginosa Phage PaP1.
Chem Res Toxicol. 2018 Jan 16;31(1):58-65. doi: 10.1021/acs.chemrestox.7b00287. Epub 2017 Dec 11.
6
Kinetic analysis of bypass of O(6)- methylguanine by the catalytic core of yeast DNA polymerase eta.
Arch Biochem Biophys. 2016 Apr 15;596:99-107. doi: 10.1016/j.abb.2016.03.009. Epub 2016 Mar 11.
8
Kinetic analysis of bypass of abasic site by the catalytic core of yeast DNA polymerase eta.
Mutat Res. 2015 Sep;779:134-43. doi: 10.1016/j.mrfmmm.2015.07.001. Epub 2015 Jul 9.
9
Structural basis for proficient incorporation of dTTP opposite O6-methylguanine by human DNA polymerase iota.
J Biol Chem. 2010 Dec 24;285(52):40666-72. doi: 10.1074/jbc.M110.183665. Epub 2010 Oct 20.
10
Strand displacement DNA synthesis by DNA polymerase gp90 exo of Pseudomonas aeruginosa phage 1.
Biochimie. 2020 Mar;170:73-87. doi: 10.1016/j.biochi.2019.12.013. Epub 2020 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验