Wichmann F A, Hill N J
University of Oxford, England.
Percept Psychophys. 2001 Nov;63(8):1314-29. doi: 10.3758/bf03194545.
The psychometric function relates an observer's performance to an independent variable, usually a physical quantity of an experimental stimulus. Even if a model is successfully fit to the data and its goodness of fit is acceptable, experimenters require an estimate of the variability of the parameters to assess whether differences across conditions are significant. Accurate estimates of variability are difficult to obtain, however, given the typically small size of psychophysical data sets: Traditional statistical techniques are only asymptotically correct and can be shown to be unreliable in some common situations. Here and in our companion paper (Wichmann & Hill, 2001), we suggest alternative statistical techniques based on Monte Carlo resampling methods. The present paper's principal topic is the estimation of the variability of fitted parameters and derived quantities, such as thresholds and slopes. First, we outline the basic bootstrap procedure and argue in favor of the parametric, as opposed to the nonparametric, bootstrap. Second, we describe how the bootstrap bridging assumption, on which the validity of the procedure depends, can be tested. Third, we show how one's choice of sampling scheme (the placement of sample points on the stimulus axis) strongly affects the reliability of bootstrap confidence intervals, and we make recommendations on how to sample the psychometric function efficiently. Fourth, we show that, under certain circumstances, the (arbitrary) choice of the distribution function can exert an unwanted influence on the size of the bootstrap confidence intervals obtained, and we make recommendations on how to avoid this influence. Finally, we introduce improved confidence intervals (bias corrected and accelerated) that improve on the parametric and percentile-based bootstrap confidence intervals previously used. Software implementing our methods is available.
心理测量函数将观察者的表现与一个自变量相关联,该自变量通常是实验刺激的一个物理量。即使一个模型成功地拟合了数据且其拟合优度是可接受的,实验者仍需要对参数的变异性进行估计,以评估不同条件之间的差异是否显著。然而,鉴于心理物理学数据集通常规模较小,很难获得准确的变异性估计:传统统计技术仅在渐近情况下正确,并且在某些常见情况下可能被证明是不可靠的。在本文以及我们的姊妹论文(威奇曼和希尔,2001年)中,我们提出了基于蒙特卡罗重采样方法的替代统计技术。本文的主要主题是对拟合参数和派生量(如阈值和斜率)的变异性进行估计。首先,我们概述基本的自助法程序,并支持参数自助法而非非参数自助法。其次,我们描述如何检验该程序有效性所依赖的自助法桥接假设。第三,我们展示一个人对采样方案(刺激轴上采样点的位置)的选择如何强烈影响自助法置信区间的可靠性,并就如何有效地对心理测量函数进行采样提出建议。第四,我们表明,在某些情况下,分布函数的(任意)选择可能会对所获得的自助法置信区间的大小产生不良影响,并就如何避免这种影响提出建议。最后,我们引入改进的置信区间(偏差校正和加速),对先前使用的基于参数和百分位数的自助法置信区间进行改进。实现我们方法的软件可供使用。