Dickinson Richard B, Purich Daniel L
Department of Chemical Engineering, University of Florida College of Engineering, Gainesville, Florida 32610-0245 USA.
Biophys J. 2002 Feb;82(2):605-17. doi: 10.1016/S0006-3495(02)75425-8.
Although actin-based motility drives cell crawling and intracellular locomotion of organelles and certain pathogens, the underlying mechanism of force generation remains a mystery. Recent experiments demonstrated that Listeria exhibit episodes of 5.4-nm stepwise motion corresponding to the periodicity of the actin filament subunits, and extremely small positional fluctuations during the intermittent pauses [S. C. Kuo and J. L. McGrath. 2000. Nature. 407:1026-1029]. These findings suggest that motile bacteria remain firmly bound to actin filament ends as they elongate, a behavior that appears to rule out previous models for actin-based motility. We propose and analyze a new mechanochemical model (called the "Lock, Load & Fire" mechanism) for force generation by means of affinity-modulated, clamped-filament elongation. During the locking step, the filament's terminal ATP-containing subunit binds tightly to a clamp situated on the surface of a motile object; in the loading step, actin.ATP monomer(s) bind to the filament end, an event that triggers the firing step, wherein ATP hydrolysis on the clamped subunit attenuates the filament's affinity for the clamp. This last step initiates translocation of the new ATP-containing terminus to the clamp, whereupon another cycle begins anew. This model explains how surface-tethered filaments can grow while exerting flexural or tensile force on the motile surface. Moreover, stochastic simulations of the model reproduce the signature motions of Listeria. This elongation motor, which we term actoclampin, exploits actin's intrinsic ATPase activity to provide a simple, high-fidelity enzymatic reaction cycle for force production that does not require elongating filaments to dissociate from the motile surface. This mechanism may operate whenever actin polymerization is called upon to generate the forces that drive cell crawling or intracellular organelle motility.
尽管基于肌动蛋白的运动驱动细胞爬行以及细胞器和某些病原体的细胞内移动,但力产生的潜在机制仍是个谜。最近的实验表明,李斯特菌表现出与肌动蛋白丝亚基周期性相对应的5.4纳米逐步运动,并且在间歇性停顿期间位置波动极小[S.C.郭和J.L.麦格拉思。2000年。《自然》。407:1026 - 1029]。这些发现表明,运动细菌在肌动蛋白丝伸长时仍牢固地结合在肌动蛋白丝末端,这种行为似乎排除了先前基于肌动蛋白运动的模型。我们提出并分析了一种新的机械化学模型(称为“锁定、加载与激发”机制),用于通过亲和力调节的夹紧丝伸长来产生力。在锁定步骤中,丝的末端含ATP亚基紧密结合到位于运动物体表面的夹子上;在加载步骤中,肌动蛋白 - ATP单体结合到丝末端,这一事件触发激发步骤,其中夹紧亚基上的ATP水解减弱了丝对夹子的亲和力。最后一步启动新的含ATP末端向夹子的移位,随后另一个循环重新开始。该模型解释了表面束缚的丝如何在对运动表面施加弯曲或拉力的同时生长。此外,该模型的随机模拟再现了李斯特菌的标志性运动。这种伸长马达,我们称之为肌动蛋白夹子蛋白,利用肌动蛋白固有的ATP酶活性来提供一个简单、高保真的酶促反应循环以产生力,该循环不需要伸长的丝与运动表面解离。只要需要肌动蛋白聚合来产生驱动细胞爬行或细胞内细胞器运动的力,这种机制就可能起作用。