Suppr超能文献

纤维连接蛋白微丝上细胞运动的多稳定性和本构关系。

On multistability and constitutive relations of cell motion on fibronectin lanes.

机构信息

Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.

Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany.

出版信息

Biophys J. 2023 Mar 7;122(5):753-766. doi: 10.1016/j.bpj.2023.02.001. Epub 2023 Feb 4.

Abstract

Cell motility on flat substrates exhibits coexisting steady and oscillatory morphodynamics, the biphasic adhesion-velocity relation, and the universal correlation between speed and persistence (UCSP) as simultaneous observations common to many cell types. Their universality and concurrency suggest a unifying mechanism causing all three of them. Stick-slip models for cells on one-dimensional lanes suggest multistability to arise from the nonlinear friction of retrograde flow. This study suggests a mechanical mechanism controlled by integrin signaling on the basis of a biophysical model and analysis of trajectories of MDA-MB-231 cells on fibronectin lanes, which additionally explains the constitutive relations. The experiments exhibit cells with steady or oscillatory morphodynamics and either spread or moving with spontaneous transitions between the dynamic regimes, spread and moving, and spontaneous direction reversals. Our biophysical model is based on the force balance at the protrusion edge, the noisy clutch of retrograde flow, and a response function of friction and membrane drag to integrin signaling. The theory reproduces the experimentally observed cell states, characteristics of oscillations, and state probabilities. Analysis of experiments with the biophysical model establishes a stick-slip oscillation mechanism, and explains multistability of cell states and the statistics of state transitions. It suggests protrusion competition to cause direction reversal events, the statistics of which explain the UCSP. The effect of integrin signaling on drag and friction explains the adhesion-velocity relation and cell behavior at fibronectin density steps. The dynamics of our mechanism are nonlinear flow mechanics driven by F-actin polymerization and shaped by the noisy clutch of retrograde flow friction, protrusion competition via membrane tension, and drag forces. Integrin signaling controls the parameters of the mechanical system.

摘要

细胞在平面基底上的迁移表现出共存的稳定和振荡形态动力学、双相黏附-速度关系以及速度和持久性之间的普遍相关性(UCSP),这些是许多细胞类型共有的同时观察结果。它们的普遍性和并发性表明存在一种统一的机制,导致了这三者的产生。细胞在一维车道上的粘滑模型表明,多稳定性是由逆行流的非线性摩擦力引起的。本研究基于生物物理模型和对 MDA-MB-231 细胞在纤维连接蛋白车道上轨迹的分析,提出了一种由整合素信号控制的力学机制,该机制还解释了本构关系。实验表现出具有稳定或振荡形态动力学的细胞,并且具有自发的动态状态之间的转变,如扩散或移动,以及扩散和移动之间的自发方向反转。我们的生物物理模型基于突起边缘的力平衡、逆行流的噪声离合器以及摩擦力和膜阻力对整合素信号的响应函数。该理论再现了实验观察到的细胞状态、振荡特征和状态概率。用生物物理模型对实验进行分析,建立了粘滑振荡机制,解释了细胞状态的多稳定性和状态转换的统计特性。它表明突起竞争导致方向反转事件,其统计特性解释了 UCSP。整合素信号对阻力和摩擦力的影响解释了黏附-速度关系以及纤维连接蛋白密度台阶上的细胞行为。我们的机制动力学是由 F-肌动蛋白聚合驱动的非线性流动力学,并由逆行流摩擦力的噪声离合器、通过膜张力的突起竞争以及阻力来塑造。整合素信号控制机械系统的参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4a9/10027452/b340bae4edc1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验