Suppr超能文献

不同二氧化碳平衡对脑脊液中碳酸氢根形成速率的影响。

Effect of varying CO2 equilibria on rates of HCO3- formation in cerebrospinal fluid.

作者信息

Maren T H

出版信息

J Appl Physiol Respir Environ Exerc Physiol. 1979 Sep;47(3):471-7. doi: 10.1152/jappl.1979.47.3.471.

Abstract

The effects of elevated plasma CO2 partial pressure (PCO2) and [HCO3-] on cerebrospinal fluid (CSF) HCO3- accession have been reviewed in the context of the basal route of CSF HCO3- formation. The basal rate of 53 mM/h appears to be a consequence entirely of formation, via the reaction CO2 + OH- leads to HCO3-. Two-thirds of this rate is catalyzed by carbonic anhydrase, and the remainder uncatalyzed. The HCO3- accession matches 37% that of sodium, so that the HCO3- rate is involved with CSF turnover. When PCO2 is elevated twofold, the rate of HCO3- formation increase 10%, and results in elevation of CSF [HCO3-] by 5 mM in 1 h. Also, when plasma [HCO3-] is elevated 15 mM, CSF [HCO3-] rises about 5 mM/h; this is transfer of HCO3- "as such" by diffusion from plasma. The effects of hypercapnia and metabolic alkalosis on CSF HCO3- accumulation are additive, but they occur by separate processes. The effect of hypercapnia is an exaltation of the normal process due to increased substrate (CO2), but that of increased plasma HCO3- is due to imposition of an abnormal diffusion gradient for this ion between plasma and CSF. The effect of hypercapnia in elevating brain HCO3- operates to maintain brain pH and is also based on the formation of HCO3- from CO2. Brain HCO3- may also be a source of CSF HCO3-. Relations have been sought between the chemically calculated rates of HCO3- formation in CSF and those observed. The chemically calculated catalytic rate is 1,600 times greater than that observed, agreeing with the fact that more than 99.9% of choroid plexus carbonic anhydrase must be inhibited to yield a decrease in fluid formation or ion transport from plasma to CSF. The calculated uncatalyzed rate agrees closely with what is observed after complete inhibition of the enzyme. These considerations support the idea that all the HCO3- reaching the CSF is formed from CO2, rather than by transfer of the ion from plasma to CSF.

摘要

在脑脊液(CSF)HCO₃⁻形成的基础途径背景下,回顾了血浆二氧化碳分压(PCO₂)和[HCO₃⁻]升高对脑脊液HCO₃⁻增加的影响。53 mM/h的基础速率似乎完全是通过CO₂ + OH⁻ → HCO₃⁻反应形成的结果。该速率的三分之二由碳酸酐酶催化,其余部分无催化作用。HCO₃⁻的增加量与钠的增加量的37%相匹配,因此HCO₃⁻速率与脑脊液周转率有关。当PCO₂升高两倍时,HCO₃⁻形成速率增加10%,并导致脑脊液[HCO₃⁻]在1小时内升高5 mM。此外,当血浆[HCO₃⁻]升高15 mM时,脑脊液[HCO₃⁻]以约5 mM/h的速度上升;这是HCO₃⁻“原样”通过从血浆扩散而转移。高碳酸血症和代谢性碱中毒对脑脊液HCO₃⁻积累的影响是相加的,但它们通过不同的过程发生。高碳酸血症的影响是由于底物(CO₂)增加而使正常过程增强,而血浆HCO₃⁻增加的影响是由于在血浆和脑脊液之间为该离子施加了异常的扩散梯度。高碳酸血症升高脑HCO₃⁻的作用是维持脑pH值,并且也是基于由CO₂形成HCO₃⁻。脑HCO₃⁻也可能是脑脊液HCO₃⁻的一个来源。已在脑脊液中化学计算的HCO₃⁻形成速率与观察到的速率之间寻找关系。化学计算的催化速率比观察到的速率大1600倍,这与以下事实相符:必须抑制超过99.9%的脉络丛碳酸酐酶才能使液体形成或离子从血浆向脑脊液的转运减少。计算出的无催化速率与酶完全抑制后观察到的结果非常吻合。这些考虑支持这样一种观点,即到达脑脊液的所有HCO₃⁻都是由CO₂形成的,而不是通过离子从血浆转移到脑脊液形成的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验