He Yejun, Zorumski Charles F, Mennerick Steven
Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, Missouri 63110, USA.
J Neurophysiol. 2002 Feb;87(2):925-36. doi: 10.1152/jn.00225.2001.
Paired-pulse depression (PPD) of synaptic transmission is important for neuronal information processing. Historically, depletion of the readily releasable pool of synaptic vesicles has been proposed as the major component of PPD. Recent results suggest, however, that other mechanisms may be involved in PPD, including inactivation of presynaptic voltage-dependent sodium channels (NaChs), which may influence coupling of action potentials to transmitter release. In hippocampal cultures, we have examined the potential role and relative contribution of presynaptic NaCh inactivation in excitatory postsynaptic current (EPSC) PPD. Based on current- and voltage-clamp recordings from somas, our data suggest that NaCh inactivation could potentially participate in PPD. Paired stimulation of somatic action potentials (20- to 100-ms interval) results in subtle changes in action potential shape that are mimicked by low concentrations of tetrodotoxin (TTX) and that appear to be generated by a combination of fast and slow recovery from NaCh inactivation. Dilute concentrations of TTX dramatically depress glutamate release. However, we find evidence for only minimal contribution of NaCh inactivation to EPSC PPD under basal conditions. Hyperpolarization of presynaptic elements to speed recovery from inactivation or increasing the driving force on Na(+) ions through active NaChs had minimal effects on PPD while more robustly reversing the effects of pharmacological NaCh blockade. On the other hand, slight depolarization of the presynaptic membrane potential, by elevating extracellular K(+), significantly increased PPD and frequency-dependent depression of EPSCs during short trains of action potentials. The results suggest that NaCh inactivation is poised to modulate EPSC amplitude with small tonic depolarizations that likely occur with physiological or pathophysiological activity.
突触传递的双脉冲抑制(PPD)对神经元信息处理很重要。从历史上看,人们认为突触小泡易释放池的耗竭是PPD的主要组成部分。然而,最近的结果表明,PPD可能涉及其他机制,包括突触前电压依赖性钠通道(NaChs)的失活,这可能会影响动作电位与递质释放的偶联。在海马培养物中,我们研究了突触前NaCh失活在兴奋性突触后电流(EPSC)PPD中的潜在作用和相对贡献。基于对胞体的电流钳和电压钳记录,我们的数据表明NaCh失活可能参与PPD。对体细胞动作电位进行双脉冲刺激(间隔20至100毫秒)会导致动作电位形状的细微变化,低浓度的河豚毒素(TTX)可模拟这种变化,且这种变化似乎是由NaCh失活的快速和缓慢恢复共同产生的。稀释浓度的TTX会显著抑制谷氨酸释放。然而,我们发现,在基础条件下,NaCh失活对EPSC PPD的贡献极小。将突触前元件超极化以加速从失活状态恢复,或通过激活的NaChs增加Na⁺离子的驱动力,对PPD的影响很小,而能更有效地逆转药理学上NaCh阻断的作用。另一方面,通过提高细胞外[K⁺](o)使突触前膜电位轻微去极化,在短串动作电位期间显著增加了PPD和EPSC的频率依赖性抑制。结果表明,NaCh失活准备通过可能伴随生理或病理生理活动发生的小幅度强直去极化来调节EPSC幅度。