Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA; Department of Anesthesiology, Nihon University School of Dentistry, Tokyo, Japan.
Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
Br J Anaesth. 2019 Aug;123(2):219-227. doi: 10.1016/j.bja.2019.03.029. Epub 2019 May 2.
P/Q- and N-type voltage-gated calcium channels (VGCC) are the principal subtypes mediating synaptic vesicle (SV) exocytosis. Both the degree of isoflurane inhibition of SV exocytosis and VGCC subtype expression vary between brain regions and neurotransmitter phenotype. We hypothesised that differences in VGCC subtype expression contribute to synapse-selective presynaptic effects of isoflurane.
We used quantitative live-cell imaging to measure exocytosis in cultured rat hippocampal neurones after transfection of the fluorescent biosensor vGlut1-pHluorin. Selective inhibitors of P/Q- and N-type VGCCs were used to isolate subtype-specific effects of isoflurane.
Inhibition of N-type channels by 1 μM ω-conotoxin GVIA reduced SV exocytosis to 81±5% of control (n=10). Residual exocytosis mediated by P/Q-type channels was further inhibited by isoflurane to 42±4% of control (n=10). The P/Q-type channel inhibitor ω-agatoxin IVA at 0.4 μM inhibited SV exocytosis to 29±3% of control (n=10). Residual exocytosis mediated by N-type channels was further inhibited by isoflurane to 17±3% of control (n=10). Analysis of isoflurane effects at the level of individual boutons revealed no difference in sensitivity to isoflurane between P/Q- or N-type channel-mediated SV exocytosis (P=0.35). There was no correlation between the effect of agatoxin (P=0.91) or conotoxin (P=0.15) and the effect of isoflurane on exocytosis.
Sensitivity of SV exocytosis to isoflurane in rat hippocampal neurones is independent of the specific VGCC subtype coupled to exocytosis. The differential sensitivity of VGCC subtypes to isoflurane does not explain the observed neurotransmitter-selective effects of isoflurane in hippocampus.
P/Q-和 N-型电压门控钙通道(VGCC)是介导突触小泡(SV)胞吐的主要亚型。氟烷对 SV 胞吐的抑制程度和 VGCC 亚型表达在不同脑区和神经递质表型之间存在差异。我们假设 VGCC 亚型表达的差异导致氟烷对突触的选择性作用。
我们使用定量活细胞成像技术,在转染荧光生物传感器 vGlut1-pHluorin 后测量培养的大鼠海马神经元中的胞吐作用。使用 P/Q-和 N-型 VGCC 的选择性抑制剂来分离氟烷的亚型特异性作用。
1 μM ω-芋螺毒素 GVIA 抑制 N 型通道,将 SV 胞吐作用抑制至对照的 81±5%(n=10)。由 P/Q-型通道介导的残留胞吐作用进一步被氟烷抑制至对照的 42±4%(n=10)。0.4 μM 的 P/Q-型通道抑制剂 ω-芋螺毒素 IVA 将 SV 胞吐作用抑制至对照的 29±3%(n=10)。由 N-型通道介导的残留胞吐作用进一步被氟烷抑制至对照的 17±3%(n=10)。在单个囊泡水平分析氟烷的作用,发现 P/Q-或 N-型通道介导的 SV 胞吐作用对氟烷的敏感性没有差异(P=0.35)。芋螺毒素(P=0.91)或河豚毒素(P=0.15)的作用与氟烷对胞吐作用的作用之间没有相关性。
在大鼠海马神经元中,SV 胞吐作用对氟烷的敏感性与与胞吐作用偶联的特定 VGCC 亚型无关。VGCC 亚型对氟烷的敏感性差异不能解释氟烷在海马体中观察到的神经递质选择性作用。