Suppr超能文献

Wordnet词典的全球组织架构。

Global organization of the Wordnet lexicon.

作者信息

Sigman Mariano, Cecchi Guillermo A

机构信息

Laboratory of Mathematical Physics, Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.

出版信息

Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1742-7. doi: 10.1073/pnas.022341799.

Abstract

The lexicon consists of a set of word meanings and their semantic relationships. A systematic representation of the English lexicon based in psycholinguistic considerations has been put together in the database Wordnet in a long-term collaborative effort. We present here a quantitative study of the graph structure of Wordnet to understand the global organization of the lexicon. Semantic links follow power-law, scale-invariant behaviors typical of self-organizing networks. Polysemy (the ambiguity of an individual word) is one of the links in the semantic network, relating the different meanings of a common word. Polysemous links have a profound impact in the organization of the semantic graph, conforming it as a small world network, with clusters of high traffic (hubs) representing abstract concepts such as line, head, or circle. Our results show that: (i) Wordnet has global properties common to many self-organized systems, and (ii) polysemy organizes the semantic graph in a compact and categorical representation, in a way that may explain the ubiquity of polysemy across languages.

摘要

词汇表由一组词义及其语义关系组成。基于心理语言学考量的英语词汇表的系统表示,是在长期合作努力下,整合到数据库Wordnet中的。我们在此展示一项关于Wordnet图结构的定量研究,以了解词汇表的全局组织。语义链接遵循自组织网络典型的幂律、尺度不变行为。一词多义(单个词的歧义性)是语义网络中的链接之一,它关联着一个常用词的不同含义。多义词链接对语义图的组织有着深远影响,使其成为一个小世界网络,其中高流量集群(枢纽)代表诸如线、头或圆等抽象概念。我们的结果表明:(i)Wordnet具有许多自组织系统共有的全局属性,并且(ii)一词多义以一种紧凑且分类的表示方式组织语义图,这种方式可能解释了一词多义在各种语言中的普遍存在。

相似文献

1
Global organization of the Wordnet lexicon.
Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1742-7. doi: 10.1073/pnas.022341799.
2
Word Senses as Clusters of Meaning Modulations: A Computational Model of Polysemy.
Cogn Sci. 2021 Apr;45(4):e12955. doi: 10.1111/cogs.12955.
3
Semi-supervised word polarity identification in resource-lean languages.
Neural Netw. 2014 Oct;58:50-9. doi: 10.1016/j.neunet.2014.05.018. Epub 2014 Jun 4.
5
Emotion norms for 6000 Polish word meanings with a direct mapping to the Polish wordnet.
Behav Res Methods. 2022 Oct;54(5):2146-2161. doi: 10.3758/s13428-021-01697-0. Epub 2021 Dec 10.
6
Multiplex model of mental lexicon reveals explosive learning in humans.
Sci Rep. 2018 Feb 2;8(1):2259. doi: 10.1038/s41598-018-20730-5.
7
Conceptual relations predict colexification across languages.
Cognition. 2020 Aug;201:104280. doi: 10.1016/j.cognition.2020.104280. Epub 2020 May 19.
8
Towards new information resources for public health--from WordNet to MedicalWordNet.
J Biomed Inform. 2006 Jun;39(3):321-32. doi: 10.1016/j.jbi.2005.09.004. Epub 2005 Oct 24.
10
Evolution of word meanings through metaphorical mapping: Systematicity over the past millennium.
Cogn Psychol. 2017 Aug;96:41-53. doi: 10.1016/j.cogpsych.2017.05.005. Epub 2017 Jun 8.

引用本文的文献

1
Semantic encoding during language comprehension at single-cell resolution.
Nature. 2024 Jul;631(8021):610-616. doi: 10.1038/s41586-024-07643-2. Epub 2024 Jul 3.
2
Topological properties and organizing principles of semantic networks.
Sci Rep. 2023 Jul 20;13(1):11728. doi: 10.1038/s41598-023-37294-8.
3
Beyond the Failure of Direct-Matching in Keyword Evaluation: A Sketch of a Graph Based Solution.
Front Artif Intell. 2022 Mar 24;5:801564. doi: 10.3389/frai.2022.801564. eCollection 2022.
4
Exploring Networks of Lexical Variation in Russian Sign Language.
Front Psychol. 2022 Jan 5;12:740734. doi: 10.3389/fpsyg.2021.740734. eCollection 2021.
6
A Study on Differences between Simplified and Traditional Chinese Based on Complex Network Analysis of the Word Co-Occurrence Networks.
Comput Intell Neurosci. 2020 Dec 3;2020:8863847. doi: 10.1155/2020/8863847. eCollection 2020.
7
How humans learn and represent networks.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29407-29415. doi: 10.1073/pnas.1912328117.
9
Cultural influences on word meanings revealed through large-scale semantic alignment.
Nat Hum Behav. 2020 Oct;4(10):1029-1038. doi: 10.1038/s41562-020-0924-8. Epub 2020 Aug 10.
10
Using Language Processing and Speech Analysis for the Identification of Psychosis and Other Disorders.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 Aug;5(8):770-779. doi: 10.1016/j.bpsc.2020.06.004. Epub 2020 Jun 14.

本文引用的文献

1
The small world of human language.
Proc Biol Sci. 2001 Nov 7;268(1482):2261-5. doi: 10.1098/rspb.2001.1800.
2
The large-scale organization of metabolic networks.
Nature. 2000 Oct 5;407(6804):651-4. doi: 10.1038/35036627.
3
Error and attack tolerance of complex networks.
Nature. 2000 Jul 27;406(6794):378-82. doi: 10.1038/35019019.
4
Critical exponents and scaling relations for self-organized critical phenomena.
Phys Rev Lett. 1988 Jun 6;60(23):2347-2350. doi: 10.1103/PhysRevLett.60.2347.
5
Imaging unconscious semantic priming.
Nature. 1998 Oct 8;395(6702):597-600. doi: 10.1038/26967.
6
Collective dynamics of 'small-world' networks.
Nature. 1998 Jun 4;393(6684):440-2. doi: 10.1038/30918.
7
Word concepts: a theory and simulation of some basic semantic capabilities.
Behav Sci. 1967 Sep;12(5):410-30. doi: 10.1002/bs.3830120511.
9
Orienting attention within visual fields: how efficient is interhemispheric transfer?
J Exp Psychol Hum Percept Perform. 1985 Oct;11(5):650-66. doi: 10.1037//0096-1523.11.5.650.
10
A distributed, developmental model of word recognition and naming.
Psychol Rev. 1989 Oct;96(4):523-68. doi: 10.1037/0033-295x.96.4.523.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验