Matsuki Yuichi, Nakamura Katsumi, Watanabe Hideyuki, Aoki Takatoshi, Nakata Hajime, Katsuragawa Shigehiko, Doi Kunio
Department of Radiology, University of Occupational and Environmental Health School of Medicine, Iseigaoka 1-1, Yahatanishi-ku, Kitakyushu-shi, 807-8555, Japan.
AJR Am J Roentgenol. 2002 Mar;178(3):657-63. doi: 10.2214/ajr.178.3.1780657.
The purpose of our study was to use an artificial neural network to differentiate benign from malignant pulmonary nodules on high-resolution CT findings and to evaluate the effect of artificial neural network output on the performance of radiologists using receiver operating characteristic analysis.
We selected 155 cases with pulmonary nodules less than 3 cm (99 malignant nodules and 56 benign nodules). An artificial neural network was used to distinguish benign from malignant nodules on the basis of seven clinical parameters and 16 radiologic findings that were extracted by attending radiologists using subjective rating scales. In the observer test, 12 radiologists (four attending radiologists, four radiology fellows, and four radiology residents) were presented with high-resolution CT images, first without and then with the artificial neural network output. Observer performance was evaluated by means of receiver operating characteristic analysis using a continuous rating scale.
The artificial neural network showed a high performance in differentiating benign from malignant pulmonary nodules (A(z) = 0.951). The average A(z) value for all radiologists increased by a statistically significant level, from 0.831 to 0.959, with the use of the artificial neural network output.
Our computerized scheme using the artificial neural network can improve the diagnostic accuracy of radiologists who are differentiating benign from malignant pulmonary nodules on high-resolution CT.
本研究的目的是利用人工神经网络根据高分辨率CT表现区分肺结节的良恶性,并通过接受者操作特征分析评估人工神经网络输出对放射科医生诊断性能的影响。
我们选取了155例肺结节直径小于3 cm的病例(99例恶性结节和56例良性结节)。基于7项临床参数和16项影像学表现,使用人工神经网络区分良恶性结节,这些参数和表现由主治放射科医生使用主观评分量表提取。在观察者测试中,向12名放射科医生(4名主治放射科医生、4名放射科住院医师和4名放射科实习医师)展示高分辨率CT图像,先不展示人工神经网络输出结果,然后展示该结果。通过使用连续评分量表的接受者操作特征分析来评估观察者的表现。
人工神经网络在区分肺结节的良恶性方面表现出很高的性能(A(z)=0.951)。使用人工神经网络输出结果后,所有放射科医生的平均A(z)值从0.831提高到0.959,差异有统计学意义。
我们使用人工神经网络的计算机化方案可以提高放射科医生在高分辨率CT上区分肺结节良恶性的诊断准确性。