Suppr超能文献

用于肺部CT图像中肺结节分类的形状和纹理特征组合

A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images.

作者信息

Dhara Ashis Kumar, Mukhopadhyay Sudipta, Dutta Anirvan, Garg Mandeep, Khandelwal Niranjan

机构信息

Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, 721302, India.

Electronics and Communication Engineering, Birla Institute of Technology Mesra, Ranchi, 835215, India.

出版信息

J Digit Imaging. 2016 Aug;29(4):466-75. doi: 10.1007/s10278-015-9857-6.

Abstract

Classification of malignant and benign pulmonary nodules is important for further treatment plan. The present work focuses on the classification of benign and malignant pulmonary nodules using support vector machine. The pulmonary nodules are segmented using a semi-automated technique, which requires only a seed point from the end user. Several shape-based, margin-based, and texture-based features are computed to represent the pulmonary nodules. A set of relevant features is determined for the efficient representation of nodules in the feature space. The proposed classification scheme is validated on a data set of 891 nodules of Lung Image Database Consortium and Image Database Resource Initiative public database. The proposed classification scheme is evaluated for three configurations such as configuration 1 (composite rank of malignancy "1" and "2" as benign and "4" and "5" as malignant), configuration 2 (composite rank of malignancy "1","2", and "3" as benign and "4" and "5" as malignant), and configuration 3 (composite rank of malignancy "1" and "2" as benign and "3","4" and "5" as malignant). The performance of the classification is evaluated in terms of area (A z) under the receiver operating characteristic curve. The A z achieved by the proposed method for configuration-1, configuration-2, and configuration-3 are 0.9505, 0.8822, and 0.8488, respectively. The proposed method outperforms the most recent technique, which depends on the manual segmentation of pulmonary nodules by a trained radiologist.

摘要

恶性和良性肺结节的分类对于进一步的治疗方案至关重要。目前的工作重点是使用支持向量机对良性和恶性肺结节进行分类。肺结节采用半自动技术进行分割,该技术仅需要终端用户提供一个种子点。计算了几种基于形状、基于边缘和基于纹理的特征来表征肺结节。为了在特征空间中有效表示结节,确定了一组相关特征。所提出的分类方案在肺图像数据库联盟和图像数据库资源倡议公共数据库的891个结节数据集上进行了验证。对所提出的分类方案在三种配置下进行了评估,即配置1(恶性综合等级“1”和“2”为良性,“4”和“5”为恶性)、配置2(恶性综合等级“1”、“2”和“3”为良性,“4”和“5”为恶性)以及配置3(恶性综合等级“1”和“2”为良性,“3”、“4”和“5”为恶性)。分类性能根据接收器操作特征曲线下的面积(Az)进行评估。所提出的方法在配置1、配置2和配置3下实现的Az分别为0.9505、0.8822和0.8488。所提出的方法优于最新技术,后者依赖于训练有素的放射科医生对肺结节进行手动分割。

相似文献

8
A Segmentation Framework of Pulmonary Nodules in Lung CT Images.肺部CT图像中肺结节的分割框架
J Digit Imaging. 2016 Feb;29(1):86-103. doi: 10.1007/s10278-015-9801-9.

引用本文的文献

2
Pulmonary Nodule Classification Using a Multiview Residual Selective Kernel Network.使用多视图残差选择核网络进行肺结节分类。
J Imaging Inform Med. 2024 Feb;37(1):347-362. doi: 10.1007/s10278-023-00928-4. Epub 2024 Jan 11.
10
Inheritance and innovation of the diagnosis of peripheral pulmonary lesions.周围型肺部病变诊断的传承与创新
Ther Adv Chronic Dis. 2023 Jan 27;14:20406223221146723. doi: 10.1177/20406223221146723. eCollection 2023.

本文引用的文献

4
Algorithm versus physicians variability evaluation in the cardiac chambers extraction.心脏腔室提取中算法与医生变异性评估
IEEE Trans Inf Technol Biomed. 2012 Sep;16(5):835-41. doi: 10.1109/TITB.2012.2201949. Epub 2012 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验