León José
Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Valencia, Spain.
Front Plant Sci. 2022 Mar 11;13:859374. doi: 10.3389/fpls.2022.859374. eCollection 2022.
Nitric oxide (NO), which is ubiquitously present in living organisms, regulates many developmental and stress-activated processes in plants. Regulatory effects exerted by NO lies mostly in its chemical reactivity as a free radical. Proteins are main targets of NO action as several amino acids can undergo NO-related post-translational modifications (PTMs) that include mainly S-nitrosylation of cysteine, and nitration of tyrosine and tryptophan. This review is focused on the role of protein tyrosine nitration on NO signaling, making emphasis on the production of NO and peroxynitrite, which is the main physiological nitrating agent; the main metabolic and signaling pathways targeted by protein nitration; and the past, present, and future of methodological and strategic approaches to study this PTM. Available information on identification of nitrated plant proteins, the corresponding nitration sites, and the functional effects on the modified proteins will be summarized. However, due to the low proportion of nitrated peptides and their inherent instability, the identification of nitration sites by proteomic analyses is a difficult task. Artificial nitration procedures are likely not the best strategy for nitration site identification due to the lack of specificity. An alternative to get artificial site-specific nitration comes from the application of genetic code expansion technologies based on the use of orthogonal aminoacyl-tRNA synthetase/tRNA pairs engineered for specific noncanonical amino acids. This strategy permits the programmable site-specific installation of genetically encoded 3-nitrotyrosine sites in proteins expressed in , thus allowing the study of the effects of specific site nitration on protein structure and function.
一氧化氮(NO)广泛存在于生物体内,调节植物的许多发育和应激激活过程。NO发挥的调节作用主要源于其作为自由基的化学反应性。蛋白质是NO作用的主要靶点,因为几种氨基酸可发生与NO相关的翻译后修饰(PTM),主要包括半胱氨酸的S-亚硝基化、酪氨酸和色氨酸的硝化。本综述聚焦于蛋白质酪氨酸硝化在NO信号传导中的作用,重点阐述NO和过氧亚硝酸根(主要的生理性硝化剂)的产生;蛋白质硝化作用的主要代谢和信号传导途径;以及研究这种PTM的方法和策略的过去、现在和未来。将总结关于植物硝化蛋白质的鉴定、相应硝化位点以及对修饰蛋白质功能影响的现有信息。然而,由于硝化肽比例低且其固有的不稳定性,通过蛋白质组学分析鉴定硝化位点是一项艰巨的任务。由于缺乏特异性,人工硝化程序可能不是鉴定硝化位点的最佳策略。获得人工位点特异性硝化的一种替代方法来自基于为特定非天然氨基酸设计的正交氨酰-tRNA合成酶/tRNA对的遗传密码扩展技术的应用。这种策略允许在体内表达的蛋白质中可编程地位点特异性安装遗传编码的3-硝基酪氨酸位点,从而能够研究特定位点硝化对蛋白质结构和功能的影响。