Kim You-Me, Barak Larry S, Caron Marc G, Benovic Jeffrey L
Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
J Biol Chem. 2002 May 10;277(19):16837-46. doi: 10.1074/jbc.M201379200. Epub 2002 Mar 4.
Arrestins play an important role in regulating the function of G protein-coupled receptors including receptor desensitization, internalization, down-regulation, and signaling via nonreceptor tyrosine kinases and mitogen-activated protein kinases. Previous studies have revealed that arrestins themselves are also subject to regulation. In the present study, we focused on identifying potential mechanisms involved in regulating the function of arrestin-3. Using metabolic labeling, phosphoamino acid analysis, and mutagenesis studies, we found that arrestin-3 is constitutively phosphorylated at Thr-382 and becomes dephosphorylated upon beta(2)-adrenergic receptor activation in COS-1 cells. Casein kinase II (CKII) appears to be the major kinase mediating arrestin-3 phosphorylation, since 1) Thr-382 is contained within a canonical consensus sequence for CKII phosphorylation and 2) wild type arrestin-3 but not a T382A mutant is phosphorylated by CKII in vitro. Functional analysis reveals that mutants mimicking the phosphorylated (T382E) and dephosphorylated (T382A or T382V) states of arrestin-3 promote beta(2)-adrenergic receptor internalization and bind clathrin, beta-adaptin, and Src to comparable levels as wild type arrestin-3. This suggests that the phosphorylation of arrestin-3 does not directly regulate interaction with endocytic (clathrin, beta-adaptin) or signaling (Src) components and is in contrast to arrestin-2, where phosphorylation appears to regulate interaction with clathrin and Src. However, additional analysis reveals that arrestin-3 phosphorylation may regulate formation of a large arrestin-3-containing protein complex. Differences between the regulatory roles of arrestin-2 and -3 phosphorylation may contribute to the different cellular functions of these proteins in G protein-coupled receptor signaling and regulation.
抑制蛋白在调节G蛋白偶联受体的功能中发挥重要作用,包括受体脱敏、内化、下调以及通过非受体酪氨酸激酶和丝裂原活化蛋白激酶进行信号传导。先前的研究表明,抑制蛋白自身也受到调控。在本研究中,我们着重于确定参与调节抑制蛋白-3功能的潜在机制。通过代谢标记、磷酸氨基酸分析和诱变研究,我们发现抑制蛋白-3在COS-1细胞中组成性地在苏氨酸-382位点磷酸化,并在β₂ -肾上腺素能受体激活后去磷酸化。酪蛋白激酶II(CKII)似乎是介导抑制蛋白-3磷酸化的主要激酶,因为:1)苏氨酸-382位于CKII磷酸化典型的共有序列内;2)野生型抑制蛋白-3而非T382A突变体在体外被CKII磷酸化。功能分析表明,模拟抑制蛋白-3磷酸化(T382E)和去磷酸化(T382A或T382V)状态的突变体促进β₂ -肾上腺素能受体内化,并与网格蛋白、β适配蛋白和Src结合,其水平与野生型抑制蛋白-3相当。这表明抑制蛋白-3的磷酸化并不直接调节与内吞(网格蛋白、β适配蛋白)或信号传导(Src)成分的相互作用,这与抑制蛋白-2相反,抑制蛋白-2的磷酸化似乎调节与网格蛋白和Src的相互作用。然而,进一步分析表明,抑制蛋白-3磷酸化可能调节包含抑制蛋白-3的大蛋白复合物的形成。抑制蛋白-2和-3磷酸化的调节作用差异可能导致这些蛋白在G蛋白偶联受体信号传导和调节中的细胞功能不同。