Suppr超能文献

解码神经脉冲序列:计算脉冲序列与外部信号相关的概率。

Decoding neural spike trains: calculating the probability that a spike train and an external signal are related.

作者信息

Sanger Terence D

机构信息

Department of Child Neurology, Stanford University Medical Center, 300 Pasteur Drive, MS:5235, Stanford, CA 94305,USA.

出版信息

J Neurophysiol. 2002 Mar;87(3):1659-63. doi: 10.1152/jn.00121.2001.

Abstract

Experimental and clinical applications of extracellular recordings of spiking cell activity frequently are used to relate the activity of a cell to externally measurable signals such as surface potentials, sensory stimuli, or movement measurements. When the external signal is time-varying, correlation methods have traditionally been used to quantify the degree of relation with the neural firing. However, in some circumstances correlation methods can give misleading results. A new algorithm is described that estimates the extent to which a spike train is related to a continuous time-varying signal. The technique calculates the probability of generating a spike train with Poisson statistics if the time-varying signal determines the Poisson rate. This is accomplished by successive division of the signal and the spike train into halves and recursive calculation of the probability of each half-signal. The performance of the new algorithm is compared with the performance of correlation methods on simulated data.

摘要

尖峰细胞活动的细胞外记录的实验和临床应用经常被用于将细胞的活动与外部可测量信号(如表面电位、感觉刺激或运动测量)联系起来。当外部信号随时间变化时,传统上使用相关方法来量化与神经放电的关联程度。然而,在某些情况下,相关方法可能会给出误导性结果。本文描述了一种新算法,该算法估计一个脉冲序列与一个连续时间变化信号的相关程度。如果时变信号决定泊松率,该技术使用泊松统计来计算生成脉冲序列的概率。这是通过将信号和脉冲序列连续分成两半,并递归计算每个半信号的概率来实现的。在模拟数据上,将新算法的性能与相关方法的性能进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验