Suppr超能文献

非重复尖峰序列统计:对神经编码的原因和功能后果。

Nonrenewal spike train statistics: causes and functional consequences on neural coding.

机构信息

Department of Physics, McGill University, Montreal, QC, H3G 1Y6, Canada.

出版信息

Exp Brain Res. 2011 May;210(3-4):353-71. doi: 10.1007/s00221-011-2553-y. Epub 2011 Jan 26.

Abstract

Many neurons display significant patterning in their spike trains (e.g. oscillations, bursting), and there is accumulating evidence that information is contained in these patterns. In many cases, this patterning is caused by intrinsic mechanisms rather than external signals. In this review, we focus on spiking activity that displays nonrenewal statistics (i.e. memory that persists from one firing to the next). Such statistics are seen in both peripheral and central neurons and appear to be ubiquitous in the CNS. We review the principal mechanisms that can give rise to nonrenewal spike train statistics. These are separated into intrinsic mechanisms such as relative refractoriness and network mechanisms such as coupling with delayed inhibitory feedback. Next, we focus on the functional roles for nonrenewal spike train statistics. These can either increase or decrease information transmission. We also focus on how such statistics can give rise to an optimal integration timescale at which spike train variability is minimal and how this might be exploited by sensory systems to maximize the detection of weak signals. We finish by pointing out some interesting future directions for research in this area. In particular, we explore the interesting possibility that synaptic dynamics might be matched with the nonrenewal spiking statistics of presynaptic spike trains in order to further improve information transmission.

摘要

许多神经元的尖峰脉冲串(例如,振荡、爆发)表现出显著的模式化,并且有越来越多的证据表明信息包含在这些模式中。在许多情况下,这种模式化是由内在机制而不是外部信号引起的。在这篇综述中,我们专注于显示非更新统计信息(即,从一次发射到下一次发射持续的记忆)的尖峰活动。这种统计信息在周围和中枢神经元中都可见,并且似乎在中枢神经系统中普遍存在。我们回顾了可以产生非更新尖峰脉冲串统计信息的主要机制。这些机制分为内在机制,如相对不应期,以及网络机制,如与延迟抑制反馈的耦合。接下来,我们专注于非更新尖峰脉冲串统计信息的功能作用。这些作用可以增加或减少信息传输。我们还关注如何使这些统计信息产生最优的整合时间尺度,在该时间尺度下,尖峰脉冲串的可变性最小,以及感觉系统如何利用这种统计信息来最大化对弱信号的检测。最后,我们指出该领域未来研究的一些有趣方向。特别是,我们探讨了突触动力学可能与突触前尖峰脉冲串的非更新尖峰统计信息相匹配的有趣可能性,以进一步提高信息传输。

相似文献

1
Nonrenewal spike train statistics: causes and functional consequences on neural coding.
Exp Brain Res. 2011 May;210(3-4):353-71. doi: 10.1007/s00221-011-2553-y. Epub 2011 Jan 26.
3
Information coding via spontaneous oscillations in neural ensembles.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jul;62(1 Pt B):1063-8. doi: 10.1103/physreve.62.1063.
4
Dependence of neuronal correlations on filter characteristics and marginal spike train statistics.
Neural Comput. 2008 Sep;20(9):2133-84. doi: 10.1162/neco.2008.05-07-525.
5
Ergodicity of spike trains: when does trial averaging make sense?
Neural Comput. 2003 Jun;15(6):1341-72. doi: 10.1162/089976603321780308.
6
Short-term synaptic plasticity can enhance weak signal detectability in nonrenewal spike trains.
Neural Comput. 2006 Dec;18(12):2879-916. doi: 10.1162/neco.2006.18.12.2879.
7
Statistical structure of neural spiking under non-Poissonian or other non-white stimulation.
J Comput Neurosci. 2015 Aug;39(1):29-51. doi: 10.1007/s10827-015-0560-x. Epub 2015 May 5.
8
[Mathematical model of bursting spike train and its spectrum features].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2010 Dec;27(6):1353-9.
10
Transmission of temporally correlated spike trains through synapses with short-term depression.
PLoS Comput Biol. 2018 Jun 22;14(6):e1006232. doi: 10.1371/journal.pcbi.1006232. eCollection 2018 Jun.

引用本文的文献

1
An integrate-and-fire approach to Ca signaling. Part II: Cumulative refractoriness.
Biophys J. 2023 Dec 19;122(24):4710-4729. doi: 10.1016/j.bpj.2023.11.015. Epub 2023 Nov 19.
2
A dynamic spike threshold with correlated noise predicts observed patterns of negative interval correlations in neuronal spike trains.
Biol Cybern. 2022 Dec;116(5-6):611-633. doi: 10.1007/s00422-022-00946-5. Epub 2022 Oct 16.
3
Mean-return-time phase of a stochastic oscillator provides an approximate renewal description for the associated point process.
Biol Cybern. 2022 Apr;116(2):235-251. doi: 10.1007/s00422-022-00920-1. Epub 2022 Feb 15.
4
Interspike interval correlations in neuron models with adaptation and correlated noise.
PLoS Comput Biol. 2021 Aug 27;17(8):e1009261. doi: 10.1371/journal.pcbi.1009261. eCollection 2021 Aug.
5
Fano Factor: A Potentially Useful Information.
Front Comput Neurosci. 2020 Nov 20;14:569049. doi: 10.3389/fncom.2020.569049. eCollection 2020.
9
Background firing in the auditory midbrain of the frog.
IBRO Rep. 2017 Mar 21;2:54-62. doi: 10.1016/j.ibror.2017.03.003. eCollection 2017 Jun.
10
SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus attributes: A review.
Channels (Austin). 2017 Jul 4;11(4):281-304. doi: 10.1080/19336950.2017.1299835. Epub 2017 Mar 1.

本文引用的文献

1
Noise Shaping in Neural Populations with Global Delayed Feedback.
Math Model Nat Phenom. 2010 Jan 1;5(2):100-124. doi: 10.1051/mmnp/20105204.
2
How noisy adaptation of neurons shapes interspike interval histograms and correlations.
PLoS Comput Biol. 2010 Dec 16;6(12):e1001026. doi: 10.1371/journal.pcbi.1001026.
3
Biophysical information representation in temporally correlated spike trains.
Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):21973-8. doi: 10.1073/pnas.1008587107. Epub 2010 Dec 3.
5
Neural heterogeneities influence envelope and temporal coding at the sensory periphery.
Neuroscience. 2011 Jan 13;172:270-84. doi: 10.1016/j.neuroscience.2010.10.061. Epub 2010 Oct 28.
6
Interval-counting neurons in the anuran auditory midbrain: factors underlying diversity of interval tuning.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Jan;197(1):97-108. doi: 10.1007/s00359-010-0591-8. Epub 2010 Oct 8.
7
Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex.
Nature. 2010 Jul 1;466(7302):123-7. doi: 10.1038/nature09086.
8
Kinetics of fast short-term depression are matched to spike train statistics to reduce noise.
J Neurophysiol. 2010 Jun;103(6):3337-48. doi: 10.1152/jn.00117.2010. Epub 2010 Mar 31.
9
Neural heterogeneities and stimulus properties affect burst coding in vivo.
Neuroscience. 2010 Jun 16;168(1):300-13. doi: 10.1016/j.neuroscience.2010.03.012. Epub 2010 Mar 15.
10
Coherent stochastic oscillations enhance signal detection in spiking neurons.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021919. doi: 10.1103/PhysRevE.80.021919. Epub 2009 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验