Suppr超能文献

一种用于神经尖峰序列解码的统计范式,应用于从大鼠海马位置细胞的群体放电模式预测位置。

A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells.

作者信息

Brown E N, Frank L M, Tang D, Quirk M C, Wilson M A

机构信息

Statistics Research Laboratory, Department of Anesthesia and Critical Care, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114-2698, USA.

出版信息

J Neurosci. 1998 Sep 15;18(18):7411-25. doi: 10.1523/JNEUROSCI.18-18-07411.1998.

Abstract

The problem of predicting the position of a freely foraging rat based on the ensemble firing patterns of place cells recorded from the CA1 region of its hippocampus is used to develop a two-stage statistical paradigm for neural spike train decoding. In the first, or encoding stage, place cell spiking activity is modeled as an inhomogeneous Poisson process whose instantaneous rate is a function of the animal's position in space and phase of its theta rhythm. The animal's path is modeled as a Gaussian random walk. In the second, or decoding stage, a Bayesian statistical paradigm is used to derive a nonlinear recursive causal filter algorithm for predicting the position of the animal from the place cell ensemble firing patterns. The algebra of the decoding algorithm defines an explicit map of the discrete spike trains into the position prediction. The confidence regions for the position predictions quantify spike train information in terms of the most probable locations of the animal given the ensemble firing pattern. Under our inhomogeneous Poisson model position was a three to five times stronger modulator of the place cell spiking activity than theta phase in an open circular environment. For animal 1 (2) the median decoding error based on 34 (33) place cells recorded during 10 min of foraging was 8.0 (7.7) cm. Our statistical paradigm provides a reliable approach for quantifying the spatial information in the ensemble place cell firing patterns and defines a generally applicable framework for studying information encoding in neural systems.

摘要

基于从自由觅食大鼠海马体CA1区域记录的位置细胞的集合放电模式来预测其位置的问题,被用于开发一种用于神经脉冲序列解码的两阶段统计范式。在第一个阶段,即编码阶段,位置细胞的放电活动被建模为一个非齐次泊松过程,其瞬时放电率是动物在空间中的位置及其θ节律相位的函数。动物的路径被建模为高斯随机游走。在第二个阶段,即解码阶段,使用贝叶斯统计范式来推导一种非线性递归因果滤波算法,用于根据位置细胞的集合放电模式预测动物的位置。解码算法的代数运算定义了从离散脉冲序列到位置预测的明确映射。位置预测的置信区域根据给定集合放电模式下动物最可能的位置来量化脉冲序列信息。在我们的非齐次泊松模型下,在开放圆形环境中,位置对位置细胞放电活动的调制作用比θ相位强三到五倍。对于动物1(2),在10分钟觅食过程中记录的34(33)个位置细胞的中位数解码误差为8.0(7.7)厘米。我们的统计范式为量化集合位置细胞放电模式中的空间信息提供了一种可靠的方法,并为研究神经系统中的信息编码定义了一个普遍适用的框架。

相似文献

5
Dynamic analyses of information encoding in neural ensembles.神经群体中信息编码的动态分析。
Neural Comput. 2004 Feb;16(2):277-307. doi: 10.1162/089976604322742038.
8
Bayesian decoding using unsorted spikes in the rat hippocampus.大鼠海马体中未排序尖峰的贝叶斯解码。
J Neurophysiol. 2014 Jan;111(1):217-27. doi: 10.1152/jn.01046.2012. Epub 2013 Oct 2.

引用本文的文献

5
Hippocampal neuronal activity is aligned with action plans.海马体神经元活动与行动计划一致。
Nature. 2025 Mar;639(8053):153-161. doi: 10.1038/s41586-024-08397-7. Epub 2025 Jan 8.
7
Mental Time Travel: A Retrospective.心理时光旅行:回顾
Hippocampus. 2025 Jan;35(1):e23661. doi: 10.1002/hipo.23661.
9
Humans actively reconfigure neural task states.人类会主动重新配置神经任务状态。
bioRxiv. 2025 Feb 28:2024.09.29.615736. doi: 10.1101/2024.09.29.615736.

本文引用的文献

4
Parameter extraction from population codes: a critical assessment.
Neural Comput. 1996 Apr 1;8(3):511-29. doi: 10.1162/neco.1996.8.3.511.
6
Vector reconstruction from firing rates.根据放电率进行向量重构。
J Comput Neurosci. 1994 Jun;1(1-2):89-107. doi: 10.1007/BF00962720.
10
Dynamics of the hippocampal ensemble code for space.海马体空间集合编码的动力学
Science. 1993 Aug 20;261(5124):1055-8. doi: 10.1126/science.8351520.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验