Brown E N, Frank L M, Tang D, Quirk M C, Wilson M A
Statistics Research Laboratory, Department of Anesthesia and Critical Care, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114-2698, USA.
J Neurosci. 1998 Sep 15;18(18):7411-25. doi: 10.1523/JNEUROSCI.18-18-07411.1998.
The problem of predicting the position of a freely foraging rat based on the ensemble firing patterns of place cells recorded from the CA1 region of its hippocampus is used to develop a two-stage statistical paradigm for neural spike train decoding. In the first, or encoding stage, place cell spiking activity is modeled as an inhomogeneous Poisson process whose instantaneous rate is a function of the animal's position in space and phase of its theta rhythm. The animal's path is modeled as a Gaussian random walk. In the second, or decoding stage, a Bayesian statistical paradigm is used to derive a nonlinear recursive causal filter algorithm for predicting the position of the animal from the place cell ensemble firing patterns. The algebra of the decoding algorithm defines an explicit map of the discrete spike trains into the position prediction. The confidence regions for the position predictions quantify spike train information in terms of the most probable locations of the animal given the ensemble firing pattern. Under our inhomogeneous Poisson model position was a three to five times stronger modulator of the place cell spiking activity than theta phase in an open circular environment. For animal 1 (2) the median decoding error based on 34 (33) place cells recorded during 10 min of foraging was 8.0 (7.7) cm. Our statistical paradigm provides a reliable approach for quantifying the spatial information in the ensemble place cell firing patterns and defines a generally applicable framework for studying information encoding in neural systems.
基于从自由觅食大鼠海马体CA1区域记录的位置细胞的集合放电模式来预测其位置的问题,被用于开发一种用于神经脉冲序列解码的两阶段统计范式。在第一个阶段,即编码阶段,位置细胞的放电活动被建模为一个非齐次泊松过程,其瞬时放电率是动物在空间中的位置及其θ节律相位的函数。动物的路径被建模为高斯随机游走。在第二个阶段,即解码阶段,使用贝叶斯统计范式来推导一种非线性递归因果滤波算法,用于根据位置细胞的集合放电模式预测动物的位置。解码算法的代数运算定义了从离散脉冲序列到位置预测的明确映射。位置预测的置信区域根据给定集合放电模式下动物最可能的位置来量化脉冲序列信息。在我们的非齐次泊松模型下,在开放圆形环境中,位置对位置细胞放电活动的调制作用比θ相位强三到五倍。对于动物1(2),在10分钟觅食过程中记录的34(33)个位置细胞的中位数解码误差为8.0(7.7)厘米。我们的统计范式为量化集合位置细胞放电模式中的空间信息提供了一种可靠的方法,并为研究神经系统中的信息编码定义了一个普遍适用的框架。