Ball H L, King D S, Cohen F E, Prusiner S B, Baldwin M A
Institute for Neurodegenerative Diseases and Department of Neurology, University of California at San Francisco, 94143-0518, USA.
J Pept Res. 2001 Nov;58(5):357-74. doi: 10.1034/j.1399-3011.2001.00943.x.
In recent years, the technology of solid-phase peptide synthesis (SPPS) has improved to the extent that chemical synthesis of small proteins may be a viable complementary strategy to recombinant expression. We have prepared several modified and wild-type prion protein (PrP) polypeptides, of up to 112 residues, that demonstrate the flexibility of a chemical approach to protein synthesis. The principal event in prion disease is the conformational change of the normal, alpha-helical cellular protein (PrPc) into a beta-sheet-rich pathogenic isoform (PrP(Sc)). The ability to form PrP(Sc) in transgenic mice is retained by a 106 residue 'mini-prion' (PrP106), with the deletions 23-88 and 141-176. Synthetic PrP106 (sPrP106) and a His-tagged analog (sPrP106HT) have been prepared successfully using a highly optimized Fmoc chemical methodology involving DCC/HOBt activation and an efficient capping procedure with N-(2-chlorobenzyloxycarbonyloxy) succinimide. A single reversed-phase purification step gave homogeneous protein, in excellent yield. With respect to its conformational and aggregational properties and its response to proteinase digestion, sPrP106 was indistinguishable from its recombinant analog (rPrP106). Certain sequences that proved to be more difficult to synthesize using the Fmoc approach, such as bovine (Bo) PrP(90-200), were successfully prepared using a combination of the highly activated coupling reagent HATU and t-Boc chemistry. To mimic the glycosylphosphatidyl inositol (GPI) anchor and target sPrP to cholesterol-rich domains on the cell surface, where the conversion of PrPc is believed to occur, a lipophilic group or biotin, was added to an orthogonally side-chain-protected Lys residue at the C-terminus of sPrP sequences. These groups enabled sPrP to be immobilized on either the cell surface or a streptavidin-coated ELISA plate, respectively, in an orientation analogous to that of membrane-bound, GPI-anchored PrPc. The chemical manipulation of such biologically relevant forms of PrP by the introduction of point mutations or groups that mimic post-translational modifications should enhance our understanding of the processes that cause prion diseases and may lead to the chemical synthesis of an infectious agent.
近年来,固相肽合成(SPPS)技术已发展到一定程度,以至于小蛋白质的化学合成可能成为重组表达的一种可行的补充策略。我们制备了几种修饰的和野生型朊病毒蛋白(PrP)多肽,长度可达112个残基,展示了化学合成蛋白质方法的灵活性。朊病毒疾病中的主要事件是正常的α-螺旋细胞蛋白(PrPc)构象转变为富含β-折叠的致病异构体(PrP(Sc))。在转基因小鼠中形成PrP(Sc)的能力由一个106个残基的“迷你朊病毒”(PrP106)保留,其缺失了23 - 88和141 - 176位氨基酸。使用高度优化的Fmoc化学方法,包括DCC/HOBt活化和用N-(2-氯苄氧基羰基氧基)琥珀酰亚胺进行的高效封端程序,成功制备了合成的PrP106(sPrP106)和一个带有His标签的类似物(sPrP106HT)。单一的反相纯化步骤得到了均一的蛋白质,产率极高。就其构象和聚集性质以及对蛋白酶消化的反应而言,sPrP106与其重组类似物(rPrP106)没有区别。某些使用Fmoc方法证明更难合成的序列,如牛(Bo)PrP(90 - 200),使用高活性偶联试剂HATU和t-Boc化学的组合成功制备。为了模拟糖基磷脂酰肌醇(GPI)锚定并将sPrP靶向到细胞表面富含胆固醇的区域(据信PrPc的转化在此发生),在sPrP序列的C末端一个正交侧链保护的Lys残基上添加了一个亲脂性基团或生物素。这些基团分别使sPrP能够以类似于膜结合的、GPI锚定的PrPc的方向固定在细胞表面或链霉亲和素包被的ELISA板上。通过引入点突变或模拟翻译后修饰的基团对这种生物学相关形式的PrP进行化学操作,应该会增进我们对导致朊病毒疾病的过程的理解,并可能导致感染性因子的化学合成。